ABSTRACT: Paleontological data obtained in recent years reinforce the hypothesis that Aptian marine sedimentation in the sedimentary basins of the Brazilian continental margin – except the Pelotas basin, the southernmost Brazilian basin – took place under the domain of waters coming from the north through the Tethys Sea (Central Atlantic). Tethyan waters could reach the basins of the Brazilian continental margin via the seaway then existing in the present-day region of northeastern Brazil. Here there are records in several basins, notably in the São Luís (Codó Formation), Parnaíba (Codó Formation), Araripe (Santana Formation), Tucano (Marizal Formation), Sergipe (Riachuelo Formation) and Camamu (Algodões Formation) basins. Despite irrefutable marine evidence — e.g., dinoflagellates, echinoids, molluscs, and fishes, conspicuously present in the Araripe Basin — there are very few paleogeographic reconstructions that include the seaway which is totally ignored in the international literature. The skepticism is even greater in relation to the Tethyan affinity although the evidence has been well documented by molluscs and dinoflagellates, together with ammonoids in the Sergipe Basin. That skepticism may be due to the fact that, in tectonic and geodynamic terms, the opening of the South Atlantic indeed proceeded from south to north, at least in the part that extends from Argentina to the northeastern Brazilian state of Paraíba.

KEYWORDS: Aptian; Albian; Brazil; Tethys.

RESUMO: Dados paleontológicos levantados nos últimos anos vêm reforçando cada vez mais a hipótese de que a sedimentação marinha aptiana nas bacias sedimentares da margem continental brasileira – com exceção da Bacia de Pelotas, a mais meridional delas – tenha ocorrido sob o domínio de águas oriundas do norte, via Mar de Téis (Atlântico Central). As águas tétianas teriam chegado às bacias da margem continental através do “seaway” que atravessava a atual região Nordeste do Brasil, deixando seu registro nas bacias de São Luís (Formação Codó), Parnaíba (Formação Codó), Araripe (Formação Santana), Tucano (Formação Marizal), Sergipe (Formação Riachuelo) e Camamu (Formação Algodões). Apesar da prova irrefutável fornecida por diversos grupos de organismos marinhos fósseis (e.g., dinoflagelados, equinoides, foraminíferos, moluscos e peixes) conspicuamente presentes na Bacia do Araripe, são poucas as reconstituições paleogeográficas que representam explicitamente esse “seaway” que, até hoje, se encontra totalmente ignorado em publicações internacionais. O cepticismo é ainda maior com relação à afinidade tétiana, apesar de sua prova paleobiogeográfica estar bem evidenciada por moluscos e dinoflagelados e adicionalmente reforçada por ammonídeos da Bacia de Sergipe. Esse cepticismo é justificado, em parte, pelo fato de que, em termos tectônicos e geodinâmicos, a abertura do Atlântico Sul ocorreu do sul para o norte, pelo menos no trecho que vai da Argentina até o atual estado da Paraíba (Nordeste do Brasil).

PALAVRAS-CHAVE: Aptiano; Albiano; Brasil; Téis.
INTRODUCTION

Contrary to the paleogeographic reconstruction based on the configuration of tectonic plates, the initial Mesozoic entrance of sea water into the BCMBs (Brazilian Continental Margin Basins, Fig. 1) resulted from the incursion of oceanic waters from the northern hemisphere, i.e., from the Tethys Sea. The traditional model, advocating the progressive advance of the primitive South Atlantic from south to north, is disbelieved, having been induced by the fact that the tectonic opening of the South Atlantic had occurred from south to north. However, the majority of BCMBs contain marine biotas of Aptian/Albian age — the timing of the earlier marine incursion — which indicate their Tethyan origin. The evidence for this, accrued over recent decades, effectively renders irrefutable the early Tethyan influence model.

For the Albian (113 – 100 Ma), a similar model, proposed by Dias-Brito (1992, 2000), was based on the geographic distribution of pithonellids (pelagic calcispheres); he considered the Tethyan Realm as having a greater extension, reaching all the BCMBs, excepting the southernmost one (the Pelotas Basin) (Fig. 1).

Arai (2005, 2007, 2011), based on studies of organic-walled dinoflagellate cysts, recognized the presence of

Figure 1. Brazilian sedimentary basins (modified from Milani et al., 2007). The Brazilian Continental Margin Basins (BCMBs) are indicated by italics, and the basins discussed in this paper are indicated by bold characters.
the Tethyan Realm in the BCMBs even in the Aptian (125 – 113 Ma) and confirmed that Tethyan waters emanating from the north reached as far as the Santos Basin, which represents the southernmost Tethyan-influenced site in the South Atlantic.

The present paper aimed to substantiate that model by means of an inventory of fossil biotic elements that confirm Tethyan characters in the Aptian – Albian interval (125 – 100 Ma).

Geological context

The dinoflagellates, which comprise the main basis of the present work, appeared worldwide in the Middle Triassic (ca. 247 – 237 Ma). However, Western Gondwana, of which present-day Brazil occupies a part, was undergoing an erosional phase during Triassic-Jurassic time (252 – 145 Ma). The sediments deposited in these periods were accordingly of continental (non-marine) derivation, some even subaerial (non-aqueous, mostly elolian). Thus, the pre-rift stage is represented mainly by oxidized, reddish sediments (Souza-Lima & Hamsi Jr. 2003).

Through the Early Cretaceous, most of the BCMBs experienced a rift phase. Along the extensional continental margin and in the Recôncavo, Tucano, Jatobá, Araripe and Potiguar basins, rift lakes were formed during the Neocomian. In the equatorial-marginal basins west of the Potiguar Basin, rift sedimentation occurred mostly during the Aptian-Albian. In the Aptian, independently of their tectonic constitution, all of these basins received synchronous sedimentation due to an eustatic rise, which was responsible for the earliest conspicuous occurrence of Mesozoic marine organisms in Brazilian sedimentary basins.

At the maximum of the Aptian transgression, the Brazilian interior sea connected temporarily the North Atlantic and the South Atlantic that were hitherto discrete (Arai 1999, 2000) and resulted in the deposition of an extensive megasequence (Megasequence Zuni). In several Brazilian interior basins (e.g., Parnaíba, Araripe, Tucano and Sergipe basins), Zuni represents their only Cretaceous succession (Arai 2002). These basins were affected by uplifting after the Cretaceous deposition and became “chapadas” (mesa-type elevated terrains). Contrastingly, the BCMBs were not uplifted, due to continued subsidence; all BCMBs received open marine sediments from the Albian and that process continued thereafter (to the present day).

In the Aptian, except for the Pelotas Basin, the waters of the southern South Atlantic had still not effectively entered the BCMBs. However, due to the great Aptian transgression, which caused intermittent entrance of water from the Central Atlantic, a generalized deposition took place under marine influence in the BCMB and interior basins. The intermittent introduction of sea water was responsible for the deposition of the evaporites of the Alagoas local stage (equivalent, *grosso modo*, to Aptian) in most of the basins. The Aptian transgression was sufficiently extensive to produce evaporites even in basins situated in the interior of the continent (e.g., Codó Formation, Parnaíba Basin; and Ipubi Member of the Santana Formation, Araripe Basin), including those toward Africa (Avocat et al. 1992). In the Pelotas Basin, evaporites are practically absent, because it was open-marine in the Aptian, when the drift phase had already commenced (Dias et al. 1995, Souza-Lima & Hamsi Jr. 2003).

Seaway of Northeastern Brazil

Tethyan water arrived in the BCMBs via the seaway existing in the present-day region of northeastern Brazil, passing through the São Luís, Parnaíba, Araripe, Tucano and Sergipe basins. The most convincing evidence is the presence of marine fossils in the Santana Formation [Araripe Basin; e.g., fishes (Martill 1988, Maisey 1991, 2000, 2011, Silva Santos 1991, Saraiva 2008), dinoflagellates (Arai & Coimbra 1990), molluscs (Beurlen 1964), palynoforaminifera (Arai & Coimbra 1990), echinoids (Beurlen 1966, Manso & Hessel 2007, 2012) and marine turtles (Price 1973, Hirayama 1998) and in the Codó Formation [Parnaíba and São Luís basins; e.g., fishes (Silva-Santos 1985, Lindoso 2013a), dinoflagellates (Antonioli 2001, Antonioni & Arai 2002) and isopod crustaceans (Lindoso et al. 2013a)]. However, the route of the marine ingestion has been conjectural. Three options and their possible combinations have been hypothesized: (1) via the Parnaíba Basin (Beurlen 1963, 1966, Beurlen 1971 apud Lima 1978, Braun 1966 apud Lima 1978, Arai et al. 1994); (2) via the Sergipe Basin (Beurlen 1971 apud Lima 1978, Tinoco & Mabesoone 1973 apud Lima 1978, Brito 1976 apud Lima 1978, Silva Santos 1991); and (3) via the Potiguar Basin (Lima 1978, Viana 1998). For some authors (e.g., Silva Santos 1991, Arai 1999), the Araripe Basin would occupy the middle of the route of an extensive seaway having a NW-SE orientation (Fig. 2). Others have considered that the Araripe Basin represents a junction of three seaways that effectively connected the Sergipe, Parnaíba and Potiguar basins (e.g., Mabesoone et al. 1999, Valença et al. 2003). However, the complete absence of marine sediments coeval to the Santana Formation in the interior basins situated between the Araripe and Potiguar basins (e.g., Icó, Iguatu, Lima Campos, Malhada Vermelha, Lavras da Mangabeira and Rio do Peixe basins) nullifies this possibility (Arai 2006) (Fig. 3).
MATERIALS AND METHODOLOGY

The basic paleobiogeographic model for this paper is based on a comprehensive survey of fossil dinoflagellate assemblages (i.e., protistan algae belonging to the Division Dinoflagellata, Class Dinophyceae) from Cretaceous strata of Brazil. These reveal a consistent paleobiogeographic pattern for the primitive South Atlantic (Arai 2007, 2011). Moreover, the model has been strengthened by the inventory of other marine organisms which confirm Tethyan influence during Aptian/Albian time (see Appendix).

Figure 2. Aptian paleogeographic map as proposed by Arai (2005, 2007, 2011) and modified from Scotese’s (2001) map for 120 Ma. Northeasternmost Brazil and West Africa were still joined, but waters coming from the Central Atlantic could reach the northern South Atlantic (NSA) via the seaway connecting the São Luís, Parnaiba, Araripe, Sergipe and Almada basins. The areas in violet color represent major evaporitic basins; the red line represents the barrier related to the structural high comprising the Rio Grande Rise and the Walvis Ridge (RGRWRB); the red circles (A – J) are occurrences of the *Subtilisphaera* Ecozone that suggest Tethyan influence; the yellow circles (L – M) are occurrences of typically Austral marine palynofloras; and the blue circle (K) is the radiolarian occurrence of Areado Formation. Note that Aptian marine strata are as yet unconfirmed in the Parecis Basin (N).
RESULTS

Marine fossils in the interior basins

The following marine organisms have proven efficacious in the study of the Brazilian interior basins: dinoflagellates, foraminifera, radiolarians, molluscs, echinoids, crustaceans, fishes and reptiles (turtles).

Dinoflagellates

There is no doubt that the Subtilisphaera Ecozone, which represents a phytoplanktonic bloom, provides the most persuasive testimony of Tethyan affinity.

This ecozone, originally defined by Regali (1989), is characterized by an assemblage having high frequency and low diversity, and is constituted overwhelmingly by species belonging to the genus Subtilisphaera. Its occurrences can be diachronic on a worldwide scale, but in Brazil it is confined to strata of Aptian age. Its northernmost occurrence is in Morocco (Below 1981) and its southernmost one is in the Almada Basin, Brazil (Lana & Pedrão 2000). In addition to these localities, typical occurrences of the Ecozone Subtilisphaera have been recorded in the following: Senegal (Jain & Millepied 1975); Maracaibo Basin, Venezuela (Colmenares 1994); São Luís Basin (Arai et al. 1994); Ceará Basin (locus typicus, Regali 1989); Potiguar Basin (Arai et al. 1994); Parnaiba Basin (Antonioli 2001, Antonioli & Arai 2002); and Araripe Basin (Arai et al. 1994).

This geographic distribution signifies the ecozone's Tethyan character. The ecozone is less conspicuous in the Potiguar Basin, thereby suggesting that the main route of the marine ingression was through the São Luís, Parnaíba and Araripe basins, where the ecozone is more prominent.

Paleoecologically, the Subtilisphaera Ecozone constitutes a fossil record of phytoplanktonic blooms, which were clearly favoured by an epicontinental marine environment (Arai et al. 1994).

In contrast to the virtually monospecific Subtilisphaera Ecozone, palynological analyses performed by Arai et al. (2006) in the lower Aptian of the Pelotas Basin have revealed a rich and highly diversified assemblage comprising spores, pollen grains, dinoflagellate cysts, acritarchs and palynoforaminifera. The following dinoflagellate-cyst (dinocyst) taxa were identified (Arai 2011): Achomosphaera spp., Circulodinium...
spp., Cribroperidinium cf. parorthoceras, Cribroperidinium spp., Exochosphaeridium spp., Florentinia mantelli, Implerochaeridium spp., Ovuncycysta victorii, Odontochitina spp., Oligosphaeridium complex, O. tenuiprocessus, O. totum, Palaeoperidinium crenatum, Pervosphaeridium cenomaniense, Pervosphaeridium cf. pseudomystrichodinium, Pervosphaeridium spp., Pseudoceratium anaphrissum, P. eisenackii, Spiniferites bejui, Spiniferites spp., Tenua americana, Trichodinium spp. and Wrevittia callidata. Components of other groups represented – appreciably less overall in both quantitative and qualitative terms – include the following significant occurrences: the pollen grains Araucariacites spp., Callialasporites trilobatus, Classopollis spp., Equisetosporites spp. and Inaperturopollenites spp.; spores, Cricistrocussiopores spp., psilate and ornamented trilete spores; and acritarchs, Cicatricosisporites spp., Odontochitina spp., Equisetosporites spp., Classopollis spp., Cicatricosisporites spp., Odontochitina spp., and Tenua americana. Among the dinocysts identified, Occiscyusta victorii and Tenua americana are particularly important, because their previously reported occurrences are their type locality (lower Aptian, Rio Fósiles, Província de Santa Cruz, Argentina), as designated by Pöthe (1983).

Foraminifera

Previous identifications of foraminiferal tests in interior basins of northeastern Brazil are scarce and are restricted to the Araripe Basin (e.g., Branner 1915, Carvalho & Carvalho 1974, Berthou et al. 1990, Bruno & Hessel 2006). On the other hand, palynoforaminifera (chitinous linings present in palynological preparations) are more common (Lima 1978, 1979, Ari & Coimbra 1990, Rios-Netto 2011 and Ari 2012). The latter paper is especially noteworthy in recording palynoforaminifera in infra-Ipubi strata (Crato Member, Santana Formation) of the Araripe Basin, thus indicating that a marine ingestion occurred there prior to the Aptian evaporitic deposition.

Radiolarians

The only records of radiolarians in Brazilian interior basins come from the Areado Formation (Aptian, São Francisco Basin). The first discovery was by Kattah (1991), followed by Dias-Brito et al. (1999).

Molluscs

The gastropod species, Coaginia anaripensis and Gymnometana romualdoi, instituted by Beurlen (1964) from the Santana Formation, are considered to be unquestionably marine.

Echinoids

Crustaceans

Codosopus brejensis belongs to the crustacean Family Arboveretacea (Order Ispoda) and has been recorded from the Codó Formation. Although the species was endemics, it is considered to indicate Tethyan influence, because the Family Arboveretacea is exclusively Tethyan (Lindoso et al. 2013a).

From the Santana Formation, Maisey & Carvalho (1995) and Pinheiro et al. (2014) have reported respectively Paleomattea delicosa and Araripenaeus timidus (both marine crustaceans belonging to the Superfamily Penaeoidea/Order Decapoda).

The Santana Formation also contains copepods (Subclass Copepoda). Well-preserved copepods, belonging to the Superfamily Dichelesthioidea, have been found in gills of the fish *Cladocycbus gardneri* (Cressey & Patterson 1973). On the other hand, it is possible that neither the copepod nor its host (*Cladocycbus gardneri*) is definitively marine in the Santana Formation (John G. Maisey, personal communication).

Fishes

Among classic fish species of the Santana Formation, *Araripichthyes castilhoi* (Family Arripichthyidae) is surely Tethyan (Maisey & Moody 2001, Alvarado-Ortega & Brito 2011). *Cratoamia gondwanica* is a marine fish, of the Tribe Vidalamiini (Subfamily Vidalamiinae, Family Amiidae), described from the Crato Member (Santana Formation). Although instituted as a new species, it is considered indicative of Tethyan influence, because the Tribe Vidalamiini is unknown beyond the Tethyan Realm (Brito et al. 2008).

Nanaichthys longipinnus — a marine fish attributed to the Subfamily Rubiesichthyinae (Family Amiidae) — has been reported from the Marizal Formation (Tucano Basin). It was described as a new species, but is considered to connote Tethyan influence in view of the fact that the Subfamily Rubiesichthyinae is evidently exclusive to the Tethyan Realm (Amaral & Brito 2012).

Reptiles (Turtles)

Among fossil reptiles of the Santana Formation, there are two species of marine turtles: *Arapempys barretoi* and *Santanachelys gaffneyi*. The former was reported by Price (1973) from the Santana do Cariri region and considered to be representative of a group hitherto unrecorded outside the northern hemisphere. *Arapempys barretoi* was registered also from the Parnaiba Basin, in the Albian interval of the
Mitsuru Arai

Iraípecuru Formation (Kischlat & Carvalho 2000, Batista & Carvalho 2007). These authors have considered *Anaripenys barretoi* as freshwater turtle, but Oliveira (2007) admitted that it could inhabit also marine environments.

Tethyan fossils in the Sergipe Basin

Whereas in the interior basins marine deposition was interrupted in the Albian-Cenomanian, the continental-marginal basins continued to receive marine sediments. The situation of the Sergipe Basin is particularly notable for two reasons: (1) even after the disappearance of the seaway of northeastern Brazil, it continued to receive marine sedimentation due to the opening of Pernambuco-Paraiba gateway; (2) because of the regression and uplift, which began in Late Cretaceous, the basin has several exposures whence megafossils can be collected.

Pelagic Calcispheres

Most fossils called “calcispheres” are pithonellids (calcareous dinoflagellates), which are distinctly Tethyan (Dias-Brito 2002).

Foraminifera

According to Koutsoukos (1992), most foraminiferal assemblages, either planktonic or benthonic, suggest Tethyan affinity. Among planktonic species from Aptian/Albian strata, the following are especially important as Tethyan indicators: *Globigerinelloides aptiensis*, *G. barri*, *G. blowi*, *G. ferreolensis*, *G. maridalensis*, *Hedbergella labocaensis*, *H. maslakovae*, *H. semielongata* and *H. similis* (Bengtson & Koutsoukos 1992, Bengtson et al. 2007, Koutsoukos & Bengtson 2007a, b).

Radiolarians

Radiolarians were recorded by Koutsoukos & Hart (1990) from the Albian (Iraípecuru Formation) and the Cenomanian-Turonian (Cotinguiba Formation). Although the authors did not comment *vis-à-vis* the Tethyan character of these microfossils, they alluded to taxonomic and morphotypic affinities with coeval assemblages reported from the Caribbean region (Puerto Rico) and the North American western interior (Colorado, Kansas, Wyoming, Alberta).

Molluscs

Bivalves are the most traditional focus of paleontological studies of Aptian/Albian strata in the Sergipe Basin. One of the classic species is *Myophorella coqueiroensis*, which is marine (Hessel 2005). Andrade & Seeling (2000) and Seeling & Andrade (2000) emphasized the richness of marine bivalve faunas in the Sergipe Basin. Among bivalves of the Iraípecuru Formation (Aptian-Albian), the genus *Neithaea* is very important in containing such Tethyan species as: *Neithaea alpina*, *N. coquandi* and *N. hispanica*. The species *Neithaea alpina* and *N. coquandi* are also present in the Algodões Formation (Albian-Cenomanian, Camamu Basin) (Andrade et al. 2004).

Gastropods are also very abundant in the Sergipe Basin; according to Cassab (2000), most of them have Tethyan affinity.

Ammonoids are the most important fossil group in the Sergipe Basin (Bengtson & Souza-Lima 2000). Among species from the Aptian-Albian interval, the following are considered typically Tethyan: *Epicheloniceras cf. martinoides*, *Vectisites simplex* and *V. cf. cruzi* (Bengtson & Koutsoukos 1992, Bengtson et al. 2007, Koutsoukos & Bengtson 2007a, b).

Echinoids

Echinoids (typically marine) are very common in the Aptian-Coniacian interval of the Sergipe Basin (Seeling et al. 2000, Manso 2003); and Manso & Souza-Lima (2012) described new taxa from the basin’s Aptian-Albian strata. The last-mentioned authors did not affirm a Tethyan affinity, but previous records of taxa cited in their paper suggest that all of them are indeed Tethyan.

Fishes

Several fish species reported from the Santana Formation (Araripe Basin) also occur in the Iraípecuru Formation of the Sergipe Basin, namely: *Cladocyclus gardneri*, *Neoproscinetes penalvai*, *Notelops brama*, *Rhacolepis buccalis*, *Tharrhias arripis* and *Vinctifer compioni* (Silva-Santos 1991, Souza-Lima et al. 2002).

DISCUSSION

As demonstrated above, the paleontological data, involving several fossil groups, indicate the Tethyan origin of earlier marine waters that entered the primitive South Atlantic, even before the deposition of Aptian evaporites. The Tethyan influence persisted in all BCMBs (excepting the Pelotas Basin) until the latest Albian (Vraconian). For the Albian, the Tethyan influence is further evidenced by geochemical data (Azevedo 2001, 2004).

In northeastern Brazil, non-marine conditions were established in the interior basins in the Cenomanian, according to dating of the estuarine deposits of the Iraípecuru Formation (Klein & Fereira 1979) in the São Luís Basin. These represent the latest marine sedimentation on the NW-SE trend formed by the São Luís, Paraíba and Araripe basins. In contrast to the interior basins, the basins of the continental margin...
of northeastern Brazil continued to receive marine sediments, and the Tethyan influence persisted in the Potiguar and Sergipe basins until the Late Cretaceous.

Recent geological data confirm the model proposed herein; i.e., the Tethyan origin of earlier marine waters emanating from the north. Of particular relevance are the following factors: (1) recognition of Neocomian (ca. 140 Ma) marine sediments on the Romanche Fracture Zone, between northeastern Brazil and West Africa (Gasperini et al. 2001); and (2) recognition of granitic basement in the Rio Grande Rise (Carvalho 2013, Lisboa 2013a, b). The former point shows that the Tethyan waters reached the Brazilian equatorial margin as early as the beginning of the Cretaceous; the latter indicates that the physical barrier constituted by the “Microcontinent Rio Grande” and the Walvis Ridge effectively restrained free interchange of marine waters between the Pelotas and Santos basins. A similar model was proposed by Dingle (1999), who referred to the “proto-Walvis Ridge barrier”.

CONCLUSIONS

- Aptian marine sedimentation took place under the influence of Tethyan waters in all the BCMBs (Brazilian Continental-Margin Basins), except the Pelotas Basin, which was separated from them by the barrier constituted by the “Rio Grande Microcontinent”.
- The most probable route for the water entering the Northeastern Brazil seaway is through the São Luís, Parnaíba, Araripe and Sergipe basins, thus permitting the ingress of Tethyan waters into the basins of eastern and southeastern Brazil.
- Considering the occurrences of marine fossils in the Areado Formation (São Francisco Basin), the total extent of the Aptian marine transgression into the continental interior could be much greater than has traditionally been postulated. That could be confirmed in the future by the possible discovery of Aptian marine strata in the Parecis Basin (Arai 1999).
- The classic modeling of the Barremian-Aptian marine transgression (e.g., Dias 1991, 2005, 2008) needs to be reviewed.
- Paleontological studies can provide important data in support of a paradigm revolution. For example, the continental-drift hypothesis, proposed by Wegener in the early 20th century, was originally underpinned by detailed paleontological observations and the fitting of the contours of South America and Africa.

ACKNOWLEDGEMENTS

The author thanks Professor Geoffrey Playford (The University of Queensland, Brisbane, Australia) for reviewing the manuscript and making linguistic and other amendments; Dr. John G. Maisey (American Museum of Natural History, New York) for useful comments and suggestions that contributed to improving this paper; Dr. Paulo M. Brito (UERJ, Rio de Janeiro) for providing useful papers on fish paleobiogeography; M.Sc. Rafael Matos Lindoso for providing his recent reprints; and PETROBRAS (Petróleo Brasileiro S.A.) for permission to publish this paper.

REFERENCES

Appendix. Selected occurrences of marine megafossils in interior basins of northeastern Brazil.

<table>
<thead>
<tr>
<th>Echinoids</th>
<th>Source</th>
<th>Location (Fm.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bothryopneustes araripensis</td>
<td>Manso & Hessel (2007)</td>
<td>Sa</td>
</tr>
<tr>
<td>Douvillaster benguellensis</td>
<td>Manso & Hessel (2012)</td>
<td>Sa</td>
</tr>
<tr>
<td>Hemiaster proclivus</td>
<td>Manso & Hessel (2012)</td>
<td>Sa</td>
</tr>
<tr>
<td>Pygurus tinocoi</td>
<td>Beurlen (1966)</td>
<td>Sa</td>
</tr>
<tr>
<td>Molluscs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legumen ellipticum</td>
<td>Santos & Melo (2009)</td>
<td>Sa</td>
</tr>
<tr>
<td>Craginia araripensis</td>
<td>Beurlen (1964)</td>
<td>Sa</td>
</tr>
<tr>
<td>Gymnentone romualdoi</td>
<td>Beurlen (1964)</td>
<td>Sa</td>
</tr>
</tbody>
</table>

Crustaceans

* Codoisopus brejensis Lindoso, Carvalho & Mendes 2013 (Isopoda) [Co]
* Paleomattea deliciosa Maisey & Carvalho 1995 (Decapoda) [Sa]
* Araripenaeus timidus Pinheiro, Saraiva & Santana 2014 (Decapoda) [Sa]

Fishes

* Araripichthys castilhoi Santos 1985 - Brito & Yabumoto (2011) [Sa]
* Cladocyclus gardneri Agassiz, 1841 - Brito & Yabumoto (2011) [Co, Cr, Sa]
* Cratoamia gondwanica Brito, Yabumoto & Grande, 2008 [Cr]
* Iansan beurleni Silva-Santos 1968 [Sa]
* Nanaichthys longipinnus Amaral & Brito 2012 [Ma]
* Tharrhias araripensis Jordan & Brenner 1908 - Lindoso, Maisey & Carvalho (2013) [Co, Sa]
* Vinctifer comptoni Agassiz 1841 - Lindoso, Maisey & Carvalho (2013) [Co, Sa]
* Vinctifer longirostris Santos 1990 [Ma, Sa]

Reptiles (turtles)

* Araripemys barretoi Price 1973 - Oliveira (2007) [It, Sa]
* Santanachelys gaffneyi Hirayama 1998 [Sa]