INCLUSÕES FLUIDAS DO MACIÇO GRANÍTICO ANTÔNIO VICENTE, SUITE INTRUSIVA VELHO GUILHERME, PROVÍNCIA ESTANIFERA DO SUL DO PARÁ.

NILSON PINTO TEIXEIRA¹, ROSA MARIA DA SILVEIRA BELLO² & JORGE SILVA BETTENCOURT²

ABSTRACT FLUID INCLUSIONS OF THE ANTONIO VICENTE GRANITIC MASSIF, VELHO GUILHERME INTRUSIVE SUITE, SOUTH PARA TIN-PROVINCE Eight quartz aqueous fluid inclusion groups occur in granites rocks and greisens of the Antônio Vicente massif, Velho Guilherme Intrusive Suite (South Pará Tia Province - Brazil). They comprise: two-phase, three-phase and multi-phase aqueous inclusions, at room temperature, with occasional halite crystals and other solid phases. Ice melting temperatures of the inclusions vary from -2.2°C to -57.0°C, demonstrating the presence of diluted and highly saline fluids. The initial composition of Group 1 (NaK-FeCl, and Sn) hydrothermal fluid evolved towards Na + K + Ca + Al ± Fe fluids (Groups 2 and 3), NaFeCl ± K ± Fe fluids (Group 4), Li + K + Ca + Na + Cl (Groups 5 and 6), Na + K + Ca + Cr + Cl (Group 7), and Na + K + Ca + Cl ± Al (Group 8). Fluorine is always present in all groups and the suggested fluid evolution is mainly ascribed to the late to post-magmatic hydrothermal alteration, and changes in chemical parameters that affected the granites. The observed low homogenization temperatures (Thm), from 396.6°C (Group 1) to 95.8°C and 123.8°C (Groups 7 and 8) reflect the greisening and also the following phases of alteration culminating with an argillic stage. The compositional variation and the scattered nature of the Thm values are consequence of variations in the saline fluid compositions during the later to post-magmatic alteration stages, mainly of more low temperature, since oxygen isotope study discarded the hypothesis of mixing with fluids of out of the system. A alternative hypothesis to be considered are modifications of the fluid inclusions due to intra-crystalline quartz deformation.

Keywords: fluid inclusions, greisen, granites, Antônio Vicente.

RESUMO Oito grupos de inclusões fluidas aquosas ocorrem em quartzo de granitos e de greisens associados pertencentes ao maciço Antônio Vicente, Suite Intrusiva Velho Guilherme (Província Estanifera do Sul do Pará - Brasil). Trata-se de inclusões binárias, trífasicas e multifásicas, à temperatura ambiente, constituídas por soluções aquosas salinas, podendo conter cristais de halita e fases sólidas ocasionais. As temperaturas de fusão do gelo (-2.2°C a -57.0°C; Thm) mostram, em intervalos contínuos, fluidos desde diluidos até altamente salinos, os últimos conseguidos pela presença da halita. A composição inicial dos fluidos hidrotermais (NaK-FeCl, e possivelmente Sn³⁺ ou Sn⁵⁺), representada pelas inclusões do grupo 1, evoluindo para Na-K-Ca-Al±Cl ± Fe³⁺ (grupos 2 e 3), NaFeCl ± K ± Fe²⁺ (grupo 4), Li-K-Ca-Na-Cl (grupos 5 e 6), Na-K-Ca-Fe²⁺-Cl (grupo 7) e Na-K-Ca-Cl ± Al (grupo 8), em todos os casos possivelmente com fluxo. A evolução sugerida deve-se, principalmente, a alterações tardias a pós-magnéticas das rochas do maciço. As baixas Thm, de 396.6°C (grupo 1) a 95.8°C/123.8°C (grupos 7 e 8) refletem a greisificação e as fases de alteração posteriores que culminam com a argilização. As variações composicionais e a dispersão de valores de Thm decorreram de variações na composição dos fluidos salinos durante os estágios de alterações tardias a pós-magnéticas, principalmente de mais baixas temperaturas, que já verifica-se de isótopos de oxigênio descartaram a hipótese de mistura com fluidos externos ao sistema. Uma hipótese alternativa a ser considerada refere-se a modificações nas inclusões originadas devi motivo de deformações intracrínitas dos cristais de quartzo estudados.

Palavras-chave: inclusões fluidas, greisen, granito, Antônio Vicente, cassiterita.

INTRODUÇÃO O maciço granítico Antônio Vicente pertence à Suite Intrusiva Velho Guilherme (CPRM/DNPM 1991) e faz parte da Província Estanifera do Sul do Pará (Abreu e Ramos 1974). Afiora na região sul-sudeste do Estado do Pará (Fig. 1), na extremidade oeste da serra dos Carajás, aproximadamente 30 km a noroeste da cidade de São Félix do Xingu. Apresenta forma amebeada e ocupa uma área equivalente a 600 km². É intrusivo a norte em rochas do Complexo Xingu, do Grupo São Sebastião e da Formação Sobreiro (Grupamento Uatumã), a nordeste do Grupo São Sebastião, a leste em rochas do Complexo Xingu, a sudeste e sul em rochas da Formação Sobreiro e Irriri (Grupamento Uatumã), a oeste e noroeste no Grano Paraurai (Teixeira 1999). É anorogênico, tem caráter holoeucrecolítico a leucocrátiaco, composição steno a monocronática, com termos álcali-feldspato graníticos subordinados. Foi afetado, em diferentes graus, por alterações tardias a pós-magnéticas e hospedando mineralizações de Sn e outros metais (Ta, Nb, Zr, Y, etc.). Tem natureza subalcalina, é peraluminoso a metaluminoso, de afinidade tectonomagnética intra-placa e assemelha-se aos granitos do tipo-A, do sub-grupo-A₂ (Teixeira 1999).

CARACTERÍSTICAS DO MACIÇO Teixeira (1999) in-

¹ - Centro de Geociências - Universidade Federal do Pará, Caixa Postal 1 1611, CEP 66075-110, Belém, PA, noslin@ufpa.br
² - Instituto de Geociências - Universidade de São Paulo, C. P. 11.348, CEP 05422-970, São Paulo, SP, rosabella@uol.com.br, jsbetten@usp.br

Tabela 1 - Principais características petrográficas das fácies graníticas e dos greisens estudados do maciço Antônio Vicente.

<table>
<thead>
<tr>
<th>Fácies Graníticas</th>
<th>Minerais Essenciais (% modal)</th>
<th>Minerais Varietais (% modal)</th>
<th>Minerais Acessórios Primários</th>
<th>Minerais Secundários</th>
<th>Estilo de Mineralização</th>
<th>Associação Mineral Carrelada</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASMG</td>
<td>quartzo (12-38)</td>
<td>*Al-hastingsita a Fe-</td>
<td>*minerais opacos</td>
<td>sericita, muscovita,</td>
<td>ausente</td>
<td>ausentes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>edenita (2-13)</td>
<td></td>
<td>clorita, epidoto,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*biotita (<1-6)</td>
<td></td>
<td>fluorita, feldspato</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>potássico (microlina</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peráltica), albina,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>minerais opacos,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>quartzo, argilo-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>minerais</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSG</td>
<td>quartzo (2.1-51)</td>
<td>*biotita (<1-12)</td>
<td></td>
<td>sericita, muscovita,</td>
<td>ausente</td>
<td>ausentes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>clorita, epidoto,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fluorita, feldspato</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>potássico (microlina</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peráltica), albina,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>minerais opacos,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>quartzo, argilo-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>minerais</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSGIA</td>
<td>quartzo (25-44)</td>
<td>*biotita (<1-2)</td>
<td></td>
<td>sericita, muscovita,</td>
<td>disseminada</td>
<td>cassiterita, fluoroite e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>clorita, epidoto,</td>
<td></td>
<td>topázio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fluorita, feldspato</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>potássico (microlina</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peráltica), albina,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>minerais opacos,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>quartzo, argilo-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>minerais</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSMQG3</td>
<td>quartzo (56-62)</td>
<td>biotita, zircão, minerais</td>
<td></td>
<td>monazita, fluorita,</td>
<td>disseminada</td>
<td>cassiterita, fluoroite e</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opacos</td>
<td></td>
<td>topázio, cassiterita</td>
<td></td>
<td>topázio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>minerais opacos</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
dividualiza quatro domínios petrográficos principais no maciço Antônio Vicente (Fig. 2), tendo sido selecionadas para este estudo amostras do domínio 1, fácies biotita-anfibólio sieno a monzogranito (BASMG), e do domínio 3, fácies biotita sienogranito (BSG), biotita sienogranito intensamente alterado (BSGIA) e clorita-siderofilita-muscovita-quartz greisen (CSMQG) associado. Na tabela 1, são resumidas as principais características petrográficas dessas fácies.

A fácies BASMG é um diferenciado magmático relativamente menos evoluído e pouco afetado por alterações tardis a pós-magmáticas. A fácies BSG é mais evoluída e foi afetada, em diferentes graus, por alterações tardis a pós-magmáticas, mais expressivas na facie BSGIA; contém greisens associados.

As fácies BASMG e BSG, embora pouco afetadas por alterações tardeis a pós-magmáticas, apresentam algumas alterações importantes (Teixeira 1999). O plagioclásio, transformou-se em sericita ± muscovita ± clorita ± epidoto ± carbonato ± topádio, que predominam nas porções mais centrais dos cristais, com carbonato predominante na fácies menos diferenciada (BASMG), e o topádio na fácies mais evoluída (BSG). Também são comuns a albítização parcial de feldspato potássico e, subordinadamente, de plagioclásio, e microclinização do último. O anfibólio (BASMG) – Al-hastingsita a Al-ferro-

edenita (Teixeira 1999) - alterou-se para biotita ± opacos ± titanita ± allanita ± quartzo. A biotita está parcialmente clorizida, e, sob alteração mais intensa, desenvolveram-se, ao longo de seus planos de clivagem, epidoto, quartzo, fluorita, muscovita e opacos (BASMG) e epidoto, allanita, quartzo, opacos e fluorita (BSG). A biotita é relativamente rica em Al²⁺, contendo Li⁺ e razões Fe/Fe+Mg = 0,85 (Teixeira 1999).

Em geral, na fácies BSGIA ocorrem as mesmas alterações da fácies BSG, porém com maior intensidade. Assim, nas rchas mais intensamente alteradas são bastante elevadas as porcentagens modais de microclina, albita, sericita, muscovita, fluorita, topádio e cassiterita associada à muscovita, clorita e fluorita.

Em todas as fácies, nos estágios finais de alterações, formam-se argilo-minerais (provavelmente caolinita) a partir dos feldspatos potássicos, como nuvens superfestas (Teixeira 1999).

Os greisens são corpos tabulares, alojados em fraturas ou falhas da fácies BSG, ou ocorrem como manchas formadas a partir da alteração de partes dessa fácies, onde podem representar estágios avançados da alteração da mesma. As amostras de CSMQG, consistem de quartzo, muscovita, siderofilita, clorita e restos de biotita, subordinadamente zircão, opacos, cassite-

Figura 2 - Mapa geológico da área de ocorrência do maciço granítico Antônio Vicente, mostrando os principais domínios petrográficos e fácies (Teixeira & Dall’Agnol 1991)

Revista Brasileira de GeoCiências, Volume 32, 2002
rita, fluorita, monazita e topázio. A cassiterita alcança conteúdos relativamente significativos em certas amostras (até 1% modal) e associa-se à clorita.

INCLUSÕES FLUIDAS (IFs) A importância do estudo das IFs, principalmente em relação à gênese de depósitos minerais, tem sido enfatizada pelo número cada vez mais expressivo de trabalhos publicados sobre o assunto. Esses trabalhos mostram que as IFs são importantes para o estabelecimento de modelos genéticos de muitos depósitos, pois permitem caracterizar os fluidos envolvidos nos processos formadores de rochas e minerais associados. Também auxiliam, muitas vezes, na determinação das condições de P e T durante a cristalização dos minerais hospedeiros e no estabelecimento da evolução das soluções.

Métodos Os estudos das IFs foram efetuados no Laboratório de Microtermometria do Departamento de Mineralogia e Geotectônica do Instituto de Geociências da Universidade de São Paulo, iniciando-se com a petrografia, mapeamento e classificação dos diversos grupos de inclusões. Posteriormente, foram obtidos os dados microtermométricos utilizando-se a platina CHAIXMECA, modelo MTM-85, visando a caracterização dos fluidos, seus parâmetros físico-químicos e condições mínimas de aprisionamento (Roedder 1984, Shepherd et al 1985).

Tipos, distribuição e natureza das inclusões fluidas As análises microtermométricas envolveram um total de 257 IFs em 10 amostra de quartzo 1, presentes em granitos (BASMG, BSG e BSGIA), e no greisen (CSMQGs). Neste último caso, a fase analisada corresponde ao quartzo 1 herdado do granito que originou o greisen (BSG). Selecionou-se o quartzo 1 em função das dimensões e transparência dos cristais, das características óticas das IFs e por apresentar feições indicativas de conter registros de várias etapas de evolução das soluções. Os cristais são anêdricos, de granulação grossa (mai 5mm), geralmente fraturados, exibindo extinção ondulante moderada à forte e, também, sub-grãos de deformação (Teixeira 1999).

Foram investigadas principalmente as inclusões de distribuição aleatória, que ocorrem em agrupamentos ou isoladamente, com feições indicativas de origem primária, de acordo com os princípios de Roedder (1984), mas que podem ter sido reequilibradas durante os estágios de alteração. Em geral são inclusões bifásicas (L+V) e trifásicas a multifásicas (S+L+V), à temperatura ambiente, compostas por soluções aquosas salinizas. Possuem morfologia variável, desde prismáticas (cristais negativos) até de contornos irregulares, em alguns casos com feições indicativas de necking down, e dimensões desde inferiores a 10µm até superiores a 30µm. Podem conter cristais de saturação de cor clara, com formas cúbicas (halita ou sílica) ou alongadas (não identificados). Subordinadamente, ocorrem fases sólidas constituídas por minerais escuros, também não identificados devido às dimensões reduzidas.

Os dados microtermométricos revelaram a existência de oito grupos distintos de inclusões aquosasalinas, com temperaturas eutécicas características, salinidade muito variável e temperatura de homogeneização, às vezes, com amplos intervalos (Tab.2). Para o cálculo da salinidade foi considerado o limite mínimo de Tflg = -20.8°C, que representa a temperatura eutética do sistema puro NaCl:H₂O utilizado no programa FLINCOR (Brown 1989) que calcula esse parâmetro em equivalente % em peso de NaCl. O limite superior da salinidade nem sempre pode ser determinado, pois nas inclusões mais salinas, com cristais de saturação, a determinação da

<table>
<thead>
<tr>
<th>Amostras</th>
<th>Facies</th>
<th>Grupos de IFs</th>
<th>Natureza</th>
<th>Sistemas Salinos</th>
<th>ΔTf(C)</th>
<th>ΔTflg(C)</th>
<th>ΔTbom(C)</th>
<th>Salinidade (equivalente à % em peso de NaCl)</th>
<th>Densidade (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN-AV-1N-5</td>
<td>CSMQGs</td>
<td>1</td>
<td>L + V</td>
<td>NaCl-KCl-H₂O (FeCl₂)</td>
<td>-31.0 à -23.0</td>
<td>-23.6 à -11.3</td>
<td>179.8 à 396.6</td>
<td>≥23.02-15.28</td>
<td>≥4.07 - 0.75</td>
</tr>
<tr>
<td>IE-02 SL-7C-DT</td>
<td>BASMG</td>
<td>2</td>
<td>L + V</td>
<td>Na₂Cl-K₂Cl-KCN-NaCl(H₂O)</td>
<td>-65.7 à -54.7</td>
<td>-45.2 à -2.0</td>
<td>98.6 à 250</td>
<td>≥33.02-4.70</td>
<td>≥4.13 - 0.34</td>
</tr>
<tr>
<td>SL-2A-DT</td>
<td>BSGA</td>
<td>3</td>
<td>L + V</td>
<td>NaCl-KCl-KCN-NaCl(H₂O)</td>
<td>-52.8 à -47.0</td>
<td>-21.9 à -6.9</td>
<td>98.6 à 220.3</td>
<td>≥23.02-9.45</td>
<td>≥4.13 - 0.90</td>
</tr>
<tr>
<td>SL-2A-DT</td>
<td>BSGA</td>
<td>4</td>
<td>L + V</td>
<td>NaCl-KCN-NaCl(H₂O)</td>
<td>-37.6 à -34.1</td>
<td>-21.2 à -15.8</td>
<td>126.4 à 181.3</td>
<td>≥23.02-19.23</td>
<td>≥4.09 - 1.03</td>
</tr>
<tr>
<td>IE-02 SL-7C-DT</td>
<td>BASMG</td>
<td>5</td>
<td>L + V</td>
<td>Na₂Cl-K₂Cl-KCN-NaCl(H₂O)</td>
<td>-84.2 à -31.1</td>
<td>-46.7 à -13.2</td>
<td>119.0 à 192.1</td>
<td>≥23.02-17.08</td>
<td>≥4.11 - 1.01</td>
</tr>
<tr>
<td>IE-02 SL-7C-DT</td>
<td>CSMQGs</td>
<td>6</td>
<td>L + V</td>
<td>NaCl-KCl-KCN-NaCl(H₂O)</td>
<td>-95.8 à -88.5</td>
<td>-57.0 à -27.3</td>
<td>116.3 à 147.0</td>
<td>≥23.02</td>
<td>≥4.12 - 0.09</td>
</tr>
<tr>
<td>SL-2A-DT</td>
<td>BSGA</td>
<td>7</td>
<td>L + V</td>
<td>NaCl-KCN-NaCl(H₂O)</td>
<td>-46.4 à -39.1</td>
<td>-18.9 à -2.2</td>
<td>95.7 à 139.1</td>
<td>21.59-3.00</td>
<td>1.12 - 0.06</td>
</tr>
<tr>
<td>IE-02 SL-7C-DT</td>
<td>BASMG</td>
<td>8</td>
<td>L + V</td>
<td>NaCl-KCN-NaClLiCl-H₂O</td>
<td>-69.9 à -66.1</td>
<td>-26.7 à -16.5</td>
<td>123.8 à 136.6</td>
<td>≥23.02-19.82</td>
<td>≥4.11 - 1.08</td>
</tr>
</tbody>
</table>

Tabela 2 - Resultados microtermométricos das inclusões fluidas em granitos e greisen do maciço Antônio Vicente. *Linke (1958); **Davis et al. (1990); ***Borisenko (1978). ΔTf(C)= variação das temperaturas eutécicas; ΔTflg(C)= variação das temperaturas de fusão do gelo; ΔTbom(C)= variação das temperaturas de homogeneização.

138
Revista Brasileira de Geociências, Volume 32, 2002
temperatura de dissolução desses sais foi dificultada pelas suas dimensões reduzidas.

GRUPO 1

As IFS desse grupo são pouco frequentes (≥ 9,00%), tendo sido observadas apenas na amostra NN-AV-IN-5 do greisen (CSMQGs). A temperatura ambiente, são quase sempre bifásicas (L+V) e, subordinadamente triáveis (L+V+S). A temperatura eutética (TE) varia de -31,0°C a -27,0°C e a de fusão do gelo (Tfg) de -23,6°C a -11,3°C, indicando salinidade intermediária a levemente elevada (≥23,02-15,28 equivale à % em peso do NaCl; Tab. 2) e muito elevada (IFS com sólidos de saturação), e a temperatura de homogeneização total (T_{th}}_{total}) para o líquido de 179,8°C a 396,6°C (Fig. 3a, b, c).

Existem na literatura valores de TE = -28,0°C, nos sistemas NaCl-KCl-H₂O (Davis et al. 1990) e NaCl-H₂O (Davis et al. 1990 e Crawford 1981). Os valores não perfeitamente iguais aos referidos sugerem a presença de outros fons (Mg²⁺, Fe³⁺ e Fe⁴⁺), que reduzem a TE (Borisenko 1978, Crawford 1981, Davis et al. 1990), ou mesmo de Sn²⁺ ou Sn⁴⁺, uma vez que a cassiterita é relativamente abundante nessa rocha (até 1% modal), a qual também exibe os maiores teores de estaño (0,5% a 2,2%). No entanto, análises químicas de minerais e de rocha total (Teixeira 1999) mostram que o Mg²⁺ e Fe⁴⁺ são muito reduzidos tanto nas fácies menos alteradas como nos greisens derivados e, por isso, esses elementos devem ter pouca influência na fase fluida. O intervalo de temperatura obtido é, portanto, indicativo de composições compostas por NaCl-KCl-H₂O, com a presença de Fe²⁺, Sn²⁺/Sn⁴⁺ e, possivelmente, também do Fe⁴⁺. O Na⁺ e o K⁺ resultam da decomposição dos feldspatos pelas soluções ácidas durante a greisenização. A paragênese flourita + topâzio + muscovita + clorita + siderófilita, observada nas rochas mais alteradas e no greisen (Teixeira 1999), mostra a importância do fluor na mineralização de cassiterita e sugere a presença do mesmo na fase fluida. O Fe²⁺, removido do grãno pelas soluções ácidas responsáveis pela greisenização, teria sido, em parte, fixado no greisen, permanecendo o excesso junto a outros fons em solução. Isso é sugerido pela existência de um nítido trend de enriquecimento em FeO⁷/ FeO⁴+MgO no sentido da fácies BSG, que originou o greisen, para mais intensamente alterados (BSGIA), o qual é suavizado no sentido do CSMQG(G (Teixeira 1999).

GRUPO 2

As IFS desse grupo são frequentes (≥ 24%) e ocorrem principalmente nas amostras IE-02 (BSAMG) e SL-2A-DT (BSGIA) e, localmente, na amostra SL-7C-DT (BSG). A temperatura ambiente são preferencialmente bifásicas (L+V) e, às vezes, triáveis (L+V+S). A TE varia de -65,7°C a -54,7°C, Tfg de -43,2°C a -29°C (salinidades desde muito baixas até elevadas (≥23,02-4,70 equivalentes à % em peso de NaCl, Tab. 2), e T_{th}}_{total} para o estado líquido de 98,6°C a 250,0°C (Fig. 4a, b, c).

As TE para essas IFS indicam os sistemas AlCl₃-H₂O (Linke 1958, In Roedder 1984; TE = -55°C), CaCl₂-NaCl-H₂O (Borisenko 1978; TE= -55,0°C; Crawford 1981; T = -52,0°C) e CaCl₂-KCl-NaCl-H₂O (Yanativa 1946; TE= -55,0°C). Os valores de TE inferiores a -55,0°C correspondem aos mesmos sistemas, porém com outros fons como Mg²⁺ e Mn²⁺ que baixam essas temperaturas (Crawford 1981).

Assim, a composição mais aproximada deve corresponder a um sistema salino do tipo AlCl₃-CaCl₂-KCl-NaCl-H₂O, com outros cátions.

O metassomatismo sódico e potássico explicariam a presença de K⁺ e Na⁺ nas soluções. As reações do anfibólio (fácies BASMG) ou descalcificação do plagioclássio teriam liberado o Ca⁴⁺. O Al³⁺ poderia provir das alterações dos feldspatos e do anfibólio (fácies BASMG) e biotita (fácies BSG e BSGIA). Os

Figura 3: Histogramas mostrando a variação de TE (a), Tfg (b) e T_{th}}_{total} (c) das IFS do Grupo 1 - amostra NN-AV-IN-5 (CSMQGs).
resultados das análises químicas (Teixeira 1999) mostram ainda a possibilidade da existência de Fe\(^{3+}\) e F na fluido, derivados do anfibólio e da biotita, embora as TE relativas a sistemas com esses componentes não pudessem ser detectadas, por terem sido rebaixadas devido à influência do Al\(^{3+}\) e do Ca\(^{2+}\).

GRUPO 3 As IFs desse grupo são pouco frequentes (≥ 6%), estando restritas à amostra SL-2A-DT (BSGIA). São essencialmente bifásicas (L+V), à temperatura ambiente. A TE varia de -52,8\(^{\circ}\)C a -47,0\(^{\circ}\)C, Tfg de -21,9\(^{\circ}\)C a -6,9\(^{\circ}\)C, indicando salinidade baixa a levemente elevada (≥ 32,02-9,45 equivale à % em peso do NaCl, Tab. 2), e \(\text{Th}_{\text{total}}\) para o líquido, de 98,6\(^{\circ}\)C a 230,0\(^{\circ}\)C (Fig. 5a, b, c).

As TE indicam sistemas CaCl\(_2\)-H\(_2\)O (Borisenko 1978; Crawford 1981; TE = -49,8\(^{\circ}\)C, CaCl\(_2\)-KCl-H\(_2\)O (Borisenko 1978; TE = -50,5\(^{\circ}\)C, CaCl\(_2\)-NaCl-H\(_2\)O (Crawford 1981; TE = -52,0\(^{\circ}\)C) ou, ainda, AlCl\(_3\)-H\(_2\)O (Linke 1965, In Roedder 1984; TE = -35,0\(^{\circ}\)C), com outros cátions em solução (possivelmente o Fe\(^{3+}\)), que poderiam ter modificado ligeiramente estas temperaturas. Portanto, o sistema correspondente seria constituído por CaCl\(_2\)-KCl-NaCl-H\(_2\)O, podendo conter Al\(^{3+}\), Fe\(^{2+}\) e, ainda, F. A presença desses fons é bastante provável por se tratar de inclusões representativas de intenso alteração, com neoformação de quantidades importantes de minerais secundários (≥ 10% modal). Assim, Fe\(^{2+}\), Al\(^{3+}\) e F teriam sido liberados pela biotita, enquanto os fons K\(^{+}\), Na\(^{+}\) e Ca\(^{2+}\) e Al\(^{3+}\) em solução derivariam de transformações do plagiodíssio e feldspato potássico.

GRUPO 4 Trata-se de IFs muito pouco frequentes (≥ 2,7%), restritas à amostra SL-2A-DT (BSGIA). São bifásicas (L+V) à temperatura ambiente. Suas TE variam de -37,6\(^{\circ}\)C a -34,1\(^{\circ}\)C, Tfg de -21,2\(^{\circ}\)C a -15,8\(^{\circ}\)C, indicativas de salinidades intermediárias a levemente elevadas (≥ 23,02-19,27 equivale à % em peso do NaCl, Tab. 2) e \(\text{Th}_{\text{total}}\) entre 126,4\(^{\circ}\)C e 181,3\(^{\circ}\)C (Fig. 6 a, b, c).

Os dados de TE são, segundo Borisenko (1978), comparáveis com os dos sistemas NaCl-FeCl\(_2\)-H\(_2\)O (TE = -37,0\(^{\circ}\)C, FeCl\(_2\)-H\(_2\)O (TE = -35,0\(^{\circ}\)C) e FeCl\(_3\)-H\(_2\)O (TE = -36,5\(^{\circ}\)C), especificamente os situados entre -37,0\(^{\circ}\)C e -35,0\(^{\circ}\)C. Esses resultados, aliados aos estudos petrográficos, indicam um sistema NaCl-FeCl\(_2\)-FeCl\(_3\)-H\(_2\)O. A presença de Fe\(^{3+}\) no sistema, embora em quantidades reduzidas, é considerada pela ocorrência de biotita e clorita. A albítização mais intensa da fácies BSGIA, é coerente com a existência do Na\(^{+}\) em solução. A ausência de Al\(^{3+}\) pode ter resultado pelo seu consumo na formação do topázio e de outros minerais resultantes de alterações do plagiodíssio (sercita, muscovita, clorita e epidoto) e da biotita (clorita, allanita e epidoto), os quais ocorrem em quantidade bastante superior (≥ 10%) em relação à fácies menos alterada (≥ 1%, fácies BSGA).

GRUPO 5 São IFs frequentes (≥ 42%), porém restritas às amostras IE-02 (BASMG) e SL-7C-DT (BSG). São bifásicas (L+V), à temperatura ambiente, embora IFs trifásicas (L+V+S) e monofásicas (L) ocorram, localmente. As TE variam de 84,2\(^{\circ}\)C a -71,1\(^{\circ}\)C, Tfg de -46,0\(^{\circ}\)C a -13,2\(^{\circ}\)C, evidenciando salinidades intermediárias a elevadas (≥ 23,02-17,08 equivale à % em peso do NaCl, Tab. 2) e, as \(\text{Th}_{\text{total}}\) para o líquido, de 119,0\(^{\circ}\)C a 192,1\(^{\circ}\)C (Fig. 7 a, b, c).

As TE são indicativas dos sistemas LiCl-KCl-H\(_2\)O, LiCl-MgCl\(_2\)-H\(_2\)O, LiCl-CaCl\(_2\)-H\(_2\)O e LiCl-H\(_2\)O (Borisenko 1978). Trata-se, portanto, de uma variação do sistema LiCl-H\(_2\)O, pela presença de Ca\(^{2+}\), K\(^{+}\) e Na\(^{+}\), que tendem a reduzir as TE para valores inferiores a -78,0\(^{\circ}\)C (Borisenko 1978). Também não pode ser descartada a existência de F nas soluções. Esses fons devem ter sido lixiviados pelas alterações tardi a pós-magmáticas, tendo sido incorporados à fase aquosa. Assim, os feldspatos forneceram os fons K\(^{+}\) e Na\(^{+}\) e o plagiodíssio (BASMG e BSG) e/ou o anfibólio (BASMG) liberaram o Ca\(^{2+}\). A alteração do anfibólio e biotita explicam a presença do Li\(^{+}\).
Figura 5 - Histogramas de variação de TE (a), Tfg (b) e Th_total (c), das IFs do grupo 3 - amostra SL-2A-DT (BSGIA).

Figura 6 - Histogramas mostrando os intervalos de variação de TE (a), Tfg (b) e Th_total (c), das IFs do grupo 4, da amostra SL-2A-DT (BSGIA).

o que é corroborado pelas concentrações de 0,23 a 0,63% de Li₂O na biotita (Teixeira 1999).

GRUPO 6 São IFs pouco freqüentes (≥ 3,5%) e ocorrem principalmente nas fácies menos alterada BASMG (amostra IE-02), nas fácies BSG (amostra SL-7C-DT) e no greisen (amostra NN-AY-IN-5). São comumente trifásicos, à temperatura ambiente, e constituídas por H₂O (L+V) e cristais de saturação, cujo comportamento durante a criométria (Roedder 1984) mostrou tratar-se de halita. Suas TE variam de -95, 8°C a -88,5°C, as Tfg, de -57,0°C a -27,3°C, indicando salinidade elevada (Tab. 2), e as Th_total para o líquido, de 116,3°C a 147,0°C (Fig. 8a, b, c).

De acordo com os dados experimentais apresentados por Borisenko (1978), valores de TE muito baixos (-78,0°C e -74,8°C) indicam sistemas LiCl-KCl-H₂O, LiCl-MgCl₂-H₂O, LiCl-CaCl₂-H₂O e LiCl-H₂O. Os valores inferiores a -78,0°C, que caracterizam esse grupo de IFs, evidenciam uma composição semelhante a qualquer um desses sistemas salinos, embora acompanhados de outros cátions que propiciaram um rebaixamento das TE.

Os baixos valores de TE também podem decorrer de metaestabilidade do sistema NaCl-CaCl₂-H₂O, com salinidade elevada (Goldstein e Reynolds 1994, Bakker 1997, Oakes 1997), ou mesmo de erros durante o monitoramento visual do processo, sendo o eutético confundido com a recristalização do gelo, principalmente em inclusions pequenas e de baixa salinidade (Burruss 1997, 1998, Bodnar 1998). Por outro lado, Roedder (1997), com base na observação de IFs com minerais de satu-
nação obscuros, considerou que não há razão para excluir qualquer elemento das soluções aprisionadas, e Burress (1997) enfatizou que fluidos com essas características de TE podem exibir composições exóticas, experimentalmente ainda não bem documentadas.

As IFs deste grupo tem (Tab. 2) salinidade elevada (>>> 23,02 equivalente a % em peso do NaCl, Tab. 2) e suas dimensões propiciaram a observação do eutéctico. Portanto, os valores representam um sistema com a presença de Li⁺ e outros íons, ou a metaestabilidade. Considerando a paragênese principal dos granitos estudados (Tab. 1), especialmente na fácie BASMG (IE-02), onde esse grupo de inclusões é mais abundante, o sistema salino LiCl-CaCl₂-KCl-NaCl-H₂O é o mais apropriado, não podendo ser descartada a existência de F⁻ nas soluções.

GRUPO 7 São IFs pouco frequentes (≈ 10,5%) na amostra SL-2A-DT (fácies BSGIA). São dominantemente bifásicas (L+V), à temperatura ambiente. TE varia de -46,4°C até -39,1°C, Tfg de -18,9°C a -2,2°C, indicando salinidade baixa a intermediária (21,59-3,60 equivalente a % em peso do NaCl, Tab. 2) e Th_total para o líquido, de 95,7°C a 139,1°C (Fig. 9a,b,c).

Esses valores não tem correspondência na literatura, embo-
ra, por aproximação com dados experimentais, indicam um sistema NaCl-FeCl₃-H₂O (TE=37,0°C) com outros cátions, como Ca²⁺ e K⁺, redutores de TE (Borisenko 1978). Nesse caso, a associação biotita, plagioclásio efeldspato potássico teria sido a principal fonte de íons lixiviados durante a alteração, muito intensa na amostra estudada, com o reequilíbrio do quartzo em condições de mais baixa temperatura.

GRUPO 8 As IFs desse grupo são pouco freqüentes (≅ 2.7%), tendo sido identificadas apenas nas amostras IE-02 (fácies BASMG) e SL-7C-DT (fácies BSG). São quase sempre bifásicas (L+V), à temperatura ambivalente, e, subordinadamente trifásicas (L+V+S). As TE situam-se entre -69,9°C e -66,1°C, as Ttg variam de -26,7°C e -16,5°C, indicando salinidades intermediárias a pouco elevadas (> 23,02-19,82 equivalentes à % em peso do NaCl, Tab. 2), as Thₙaã para o líquido, de 123,8°C a 126,6°C, representando as menores deste estudo (Fig. 10a, b, c).

As TE indicam a presença dos sistemas AlCl₃-H₂O (Linke 1958, in Roedder 1984; TE=55,0°C) acompanhado de Ca²⁺, Na⁺ e K⁺; CaCl₂-NaCl-H₂O (Borisenko 1978; TE=55,0°C) possivelmente com Li⁺ e Al³⁺ e CaCl₂-KCl-NaCl-H₂O (Yanatieve 1946; TE=55,0°C), com Al³⁺ e Li⁺. Como anfíbolio, biotita e feldspatos são as fases principais nas amostras estudadas, um sistema mais apropriado para este grupo de inclusões poderia ser CaCl₂-KCl-NaCl-Al₂(Al₃-LiCl)-H₂O, visto que aqueles minerais poderiam ter formado, por lixiviação, esses cátions para a solução aquosa.

Embora a quantidade de dados seja pequena, devido a escassez dessas inclusões, elas foram consideradas como um grupo distinto, uma vez que possuem eutécicos bem característicos e podem representar uma etapa significativa no processo de evolução dos fluidos.

Evolução dos Fluidos Os baixos valores de Th_total obtidos em todos os grupos de IFs, mesmo representando temperaturas mínimas de aprisionamento, são interpretados como representativos das condições dos estágios de alterações tardia pós-magmáticas, que ocorreram a partir da greisenização até os processos finais de argilização. Os relatos ao estágio magnético são mais elevados e da ordem de 600°C (Teixeira 1999).

Isso é corroborado pelos valores de temperatura de greisenização discutidos na literatura, situados entre 330 e 470°C (Sherba 1970). A evolução dos fluidos durante os estágios de alteração está registrada nas IFs do quartzo 1.

As Tabelas 2 e 3 mostram a gradativa variação composicional da fase aquosa das IFs, traduzida pelos distintos valores de TE situados entre -95,8°C e -27,0°C. A variação das TE dos distintos grupos de IFs decorrem de mudanças composticionais dos fluidos magmáticos originais, por reações com minerais pré-existentes (Roedder 1984), durante os diversos estágios de alteração. Houve, assim, a desestabilização dos minerais primários, como anfíbolio (biotitização, cloritização), biotita (cloritização, muscovitização), feldspato potássico (albitização, muscovitização, argilização), plagioclásio (sericitização, muscovitização, microclínização, albitização), com lixiviação do Ca²⁺, Na⁺, K⁺, Al³⁺, Fe²⁺, Cl⁻ e, possivelmente, do Sn²⁺ e Sn⁴⁺, entre outros, não podendo ser descartada a ocorrência do fluor.

A greisenização ocorre quando soluções ácidas, decorrentes de metassomatisme sódico e potássico precoces, com produção de HCl e/ou HF, interagem com rochas, removendo álcalis, Al e elementos menores. Parte dos íons são fixados nos greisens (K, Al, Li, Be, Sn, B etc.) e parte permanece na fase fluida que se torna successivamente mais alcalina (Smirnov 1976). No curso da greisenização ocorrem mudanças mineralógicas por sericitação de feldspatos, decomposição da biotita e outros minerais das rochas precursoras, bem como remobilização da sílica e alumina, com neoformação de quartzo, micas, topázio, fluorita e minerais de minério (cassiterita, xenotima, columnita-tantalita, wolframita, calcopirita, etc.). Os álcalis e demais íons em excesso permanecem na solução, causando, a temperaturas decrecentes, outras alterações, que conduzem a uma evolução dos fluidos (Smirnov 1976, Taylor 1979, Stempk 1987).

Os resultados microtermométricos obtidos neste estudo su-
gerem que as soluções refletem apenas estágios de alteração mais tardios, a partir da greisenização, representados pelas IFS do grupo 1, que possem as maiores elevadas \(\text{TE}_{\text{total}} \) (Tab. 2, Fig. 3c) e que ocorrem apenas nos cristais de quartzo do greisen (CSMQGs). A ação das soluções ácidas sobre minerais primários dos granitos resultou na cloritização da biotita e na muscovitização/sericitização dos feldspatos, com liberação de Fe\(^{2+}\), K\(^+\), Na\(^+\) e Cl\(^-\). Esses fons predominam nas IFS do grupo 1, representativas da fase fluida em equilíbrio com os minerais formados durante a greisenização, sendo ainda provável a presença de Sn\(^{2+}\), Sn\(^{4+}\) e F. Os elementos não fixados nos minerais formados nesse estágio permaneceram na fase fluida que, com o decrescimo da temperatura e aumento da alcalinidade, foi responsável pelas demais alterações observadas.

A próxima etapa de evolução das soluções é representada pelas IFS do grupo 2 (BASMG, BSG e, principalmente, BSGIA) e do grupo 3 (BSGIA), que possuem \(\text{TE}_{\text{total}} \) inferiores (valores máximos de 250\(^\circ\)C e 230\(^\circ\)C, respectivamente). Nessas IFS predominam soluções com Ca\(^{2+}\), K\(^+\), Na\(^+\), Al\(^{3+}\) e Cl\(^-\), possivelmente, Fe\(^{2+}\) e F, provenientes da descalcificação do plagioclásio, da sericitização parcial dos feldspatos, das reações de potassificação e albitização tardias e das alterações da biotita. O AI\(^{3+}\) ocorre na fase fluida, provavelmente por não ter sido totalmente consumido durante a sericitização e cloritização. A presença do ferro é patente em IFS da fácies BSGIA e individualizadas como grupo 4 pela TE distinta. Neste caso, as \(\text{TE}_{\text{total}} \) (120\(^\circ\)C a 190\(^\circ\)C), embora pouco representativas pela ocorrência restrita dessas inclusões, situam-se numa faixa superposta ao intervalo mais frequente do grupo 3. Podem, portanto, representar fluidos localizados pertencentes ao mesmo estágio de evolução.

Na sequência, ocorrem as IFS do grupo 5, observadas apenas nas amostras mais alteradas (BASMG e BSG), com \(\text{TE}_{\text{total}} \) de 119\(^\circ\)C a 192\(^\circ\)C, semelhante à anterior, porém com maior frequência entre 119\(^\circ\)C a 150\(^\circ\)C. Nessas soluções, além do K\(^+\), Na\(^+\) e Ca\(^{2+}\), comuns nas fácies mais alteradas, também ocorre o Li\(^+\) e, provavelmente, o F, resultantes das alterações de anfibólio e biotita.

Posteriormente, ocorrem os fluidos relativos às IFS do grupo 6, com \(\text{TE}_{\text{total}} \) inferiores (116\(^\circ\)C a 147\(^\circ\)C). Estes possuem a mesma composição dos anteriores (Li\(^+\), K\(^+\), Na\(^+\) e Ca\(^{2+}\)), embora os valores menores de TE sugiram a influência de fons adicionais e/ou metaestabilidade. Foram observadas principalmente nas fácies menos alteradas, embora sua presença no greisen (CSMQGs), mesmo que rara, possa indicar a ocorrên-

Figura 10 - Histogramas de variação de TE (a), Tfg (b) e \(\text{TE}_{\text{total}} \) (c), das IFS do grupo 8, - amostras IE-02 (BASMG) e SL-7C-DT (BSG).

Tabela 3 - Evolução dos sistemas salinos segundo o “trend” CSMQGs (greisen) ao BASMG (fácies menos evolvida) do maciço granítico Antônio Vicente. (xxxx = muito frequentes; xxx = frequentes; x = pouco frequentes).

<table>
<thead>
<tr>
<th>Sistemas Salinos</th>
<th>(NaCl-KCl-KH(_2)PO(_4))</th>
<th>FeCl(_2)</th>
<th>AlCl(_3)</th>
<th>CaCl(_2)</th>
<th>NaCl-H(_2)O</th>
<th>FeCl(_2)-NaCl-KCl-CaCl(_2)-H(_2)O</th>
<th>LiCl-KCl-CaCl(_2)-NaCl-H(_2)O</th>
<th>LiCl-KCl-CaCl(_2)-NaCl-H(_2)O</th>
<th>FeCl(_2)-NaCl-KCl-CaCl(_2)-H(_2)O</th>
<th>CaCl(_2)-KCl-NaCl-H(_2)O</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta F_E)</td>
<td>-310 à -270</td>
<td>-53,7 à -54,7</td>
<td>-52,8 à -47,0</td>
<td>-37,8 à -34,1</td>
<td>-84,2 à -31,1</td>
<td>-95,8 à -88,5</td>
<td>-46,4 à -39,1</td>
<td>-69,9 à -66,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{\text{TE}_{\text{total}}}) max.</td>
<td>395,6</td>
<td>350,0</td>
<td>310,3</td>
<td>181,3</td>
<td>192,1</td>
<td>143,0</td>
<td>139,1</td>
<td>126,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{\text{TE}_{\text{total}}}) freq.</td>
<td>210 à 320</td>
<td>120 à 140</td>
<td>130 à 140</td>
<td>disperso</td>
<td>120 à 150</td>
<td>110 à 150</td>
<td>110 à 140</td>
<td>120 à 130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupos</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amastrés/Fácies</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NN - AV - IN - 5 /</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSMQGs</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL-7C-DT/BSGIA</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE-82/BASMG</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
cia de alterações adicionais mais tardias. Como são relativa-
mente escassas, é possível que representem inclusões metaestá-
veis do grupo anterior.

As fases finais de evolução dos fluidos na fácies mais alte-
rada, BSGIA, são evidenciadas pelas IFs do grupo 7, cujas
Th\text{total} variam de 95,7ºC a 139,1ºC e que contêm soluções com
Na\text{aq.}, Fe\text{aq.}, Cu\text{aq.} e K\text{aq.}. Já no caso das fácies menos alteradas
BASMG e BSQ, as menores temperaturas observadas foram
aquelas relativas às inclusões do grupo 8 (Th\text{total} de 123 a
126ºC) que, apesar de escassas, registram cutêcitos que deno-
tam variações compostacionais significativas dadas por Al\text{aq.},
K\text{aq.}, Na\text{aq.} e Cu\text{aq.}. Nessas etapas finais, passaram a ser importan-
tes as reações de argilização que retiveram o Li\text{aq.} em argilo-
minerais, retirando-os das soluções. Além disso, o Al\text{aq.}
registrado nas soluções finais das inclusões das fácies BASMG
e BSQ (Grupo 8), poderia ter resultado do menor grau de altera-
tações destas fácies em relação à BSGIA.

Os estudos realizados mostraram ausência de Li\text{aq.} nas IFs
das fácies da grãocrista mais alterada (BSGIA) e no
greisen (CSMQGs), o que pode ser explicado pela formação de
minerais ricos nesse elemento, como a muscovita e argilo-
minerais (Tardy et al. 1972).

O ferro é geralmente mais importante nas IFs das fácies
BSGIA e do greisen (CSMQGs). Esse comportamento se-
de, provavelmente, às intensas alterações que essas rochas foram
submetidas. Nesse caso o Fe não foi totalmente consumido na
formação de clorita e outros acessórios, permanecendo na so-
lução. O desaparecimento e a posterior recorrência de certos
cátons em grupos distintos de IFs aquisições em temperatu-
ras sucessivamente decrescentes, pode refletir variações locais
na mineralogia ou na intensidade das alterações, durante o
curso de evolução dos fluidos.

A interpretação da evolução dos fluidos sugerida pelo de-
créscimo das maiores Th\text{total} deve ser cautelosa, pois muitas
vezes essas temperaturas apresentam amplos intervalos de
variação. As IFs do grupo 1 são as que possuem Th\text{total} mais
elevadas, refletindo as características do fluido durante a
greisenização. Nas IFs representativas de fluidos mais tardios
(grupos 2 a 8), apesar da dispersão observada, os valores de
Th\text{total} se superpõem no intervalo de 120ºC a 150ºC, o que pode
ser interpretado como uma etapa importante de alteração das
rochas estudadas, em condições mais ou menos semelhantes.

As variações de Th\text{total} e de salinidade das soluções decorre-
ram de variações na composição dos fluidos salinos durante os
estágios de alterações tardia a pós-magmáticas de mais baixas
temperaturas, pois estudos de isótopos de oxigênio realizados
por Teixeira (1999) em grãos de quartzo, da mesma geração,
descartam a hipótese de mistura com fluidos externos ao sis-
tema. Uma hipótese alternativa a ser considerada, refere-se a
modificações nas inclusões originais devido à deformações
intracrystalinas observadas nos cristais de quartzo estudados. O
espalhamento dos valores de Th\text{total} e da densidade do fluido
(Tab. 2) também poderia ter sido, em parte, decorrente de
modificações das inclusões originais por deformações intracris-
talinas (Kerrich 1976, Wilkins e Barkas 1978, Hollister 1990,
Bakker 1992, entre outros), uma vez que os grãos de quartzo
estudados exibem extinção ondulante e, localmente, subgrãos.
A ausência de correlação entre Th\text{total} e Tqg evidenciam a influ-
ência dessas modificações nas medidas microtermométricas.

CONCLUSÕES
A mineralização estanifera do maciço Anfónio Vicente associa-se às fácies graníticas mais evoluídas e
mais afetadas por alterações tardia a pós-magmáticas e aos greisens (BSGIA e CSMQGs). Estudos petrográficos mostram
que a cassiterita ocorre apenas na fácies BSGIA e, principalmente,
e clorita-siderofilita-muscovita-quarto greisen (CSMQGs). Assim fluidos residuais ricos em voláteis que
interagiram com as rochas do maciço, lixiviaram diversos cátions, entre eles o Sn\text{aq.} e Sr\text{aq.}, resultando na formação de
cassiterita durante a greisenização.

Os dados petrográficos, aliados ao estudo microtermo-métrico,
sugerem que a lixiviação do Sn e a subsequente formação
da cassiterita ocorreu a partir de soluções aquosas representa-
das pelas IFs do grupo 1, presentes apenas em CSMQGs, tor-
mando-se sistematicamente menos intensa nas dos grupos 2 e 3
de BSGIA. Essa hipótese baseia-se: (1) na presença de cassi-
terita restrita às fácies BSGIA e ao CSMQGs; (2) nas IFs do
grupo 1, com maiores Th\text{total} que ocorrem apenas no greisen;
(3) nas IFs dos grupos 2 e 3 e que ocorrem em amostras da
fácies BSGIA e cujas temperaturas mínimas de aprisionamento
(Th\text{min}) são coerentes com a formação mais tardia de cassi-
terita. Considerando-se a presença de cassiterita no BSGIA,
como bem a semelhança nas composições das IFs dos grupos 2 e
3, é razoável supor que a formação do mineral também se
vincule a esses sistemas, mesmo que as TE não possibilitem
detectar Sn por falta de dados experimentais.

Considerando que nos demais grupos de IFs (grupos 4, 5, 6,
7, 8), as Th\text{total} são inferiores e que nas amostras das fácies
BASMG e BSQ a cassiterita não foi identificada, supõe-se que
as soluções a estas correspondentes ou não contêm estanho
ou, se presente, as temperaturas não foram suficientes para a
formar esse mineral.

Agradecimentos
À FAPESP (Processo nº 96/3942-0), pelo apoio ao desenvolvimento do projeto, à geóloga Sonia A. A.
Nogueira, pelo auxílio e sugestões no decorrer do trabalho, ao
estudante do Curso de Graduação em Geologia Carlos
Marcello Dias Ferrandes pelo auxílio na confecção das figuras.
R. M. S. Bello agradece ao CNPq, pela Bolsa de Pesquisa (Pro-
cesso nº 303872/85-3) e Jorge S. Bettencourt agradece à
FAPESP pelo auxílio à pesquisa (Processo nº 1996/3942-0).
Aos revisores anônimos da RBG pela análise crítica do origi-
nal. Este trabalho é uma contribuição ao IGCP-426 e ao
PRONEX (103-98/MCT/CNPq - Proc. 66.2103/98-0).

Referências

5:11-23.
Bakker R.J. 1997. Short discussion of apparent low eutectic
temperature observations that was held during June 1997.
http://www.geology.wisc.edu/~pbrown/loweutecl.html
Bodnar R. 1998. Additional discussion of apparent low
temperature observations that was held in February 1998.
http://www.geology.wisc.edu/~pbrown/loweutecl2.html
Borisenko A.S. 1978. Study of the salt composition of solutions

Revista Brasileira de Geociências, Volume 32, 2002

145
Inclusões fluidas do maciço granítico Antônio Vicente, suite intrusiva Velho Guilherme, província estanifera do sul do Pará

Manuscrito A-1270
Recebido em 03 de novembro de 2001
Revisão dos autores em 20 de fevereiro de 2002
Revisão aceita em 21 de fevereiro de 2002