GRUPO ARAXÁ EM SUA ÁREA TIPO: UM FRAGMENTO DE CROSTA OCEÁNICA NEOPROTEROZÓICA NA FAIXA DE DOBRAMENTOS BRASILÍA

HILDOR JOSÉ SEER1, JOSÉ AFFONSO BROD2, REINHARDT ADOLFO FUCK2, MÁRCIO MARTINS PIMENTEL2, GERALDO RESENDE BOAVENTURA2, MARCEL AUGUSTE DARDENNÉ3

ABSTRACT
ARAXÁ GROUP IN THE TYPE-AREA: A FRAGMENT OF NEOPROTEROZOCIC OCEANIC CRUST IN THE BRASILIAN FOLD BELT
This study reviews the geological characteristics and puts forward a new evolution model for the Araxá Group in its type-area, the southern segment of the Neoproterozoic Brasília Belt, Minas Gerais, Brazil. The Araxá Group is confined within a thrust sheet belonging to a synformal regional fold, the Araxá Synform, overlying two other thrust sheets made of the Ibiá and Canastra Groups. The Araxá Group is described as a tectonostratigraphic terrain in the sense of Howell (1993). It comprises an igneous mafic sequence, with fine and coarse-grained amphibolites associated with pelitic metasedimentary rocks, and subordinate psammites. All rocks were metamorphosed to amphibolite facies at ca. 630 Ma ago and were intruded by collisional granites. The amphibolites represent original basaltic and gabbroic rocks, with minor ultramafics (serpentinites/amiolite-actinolite schist). The basals are similar to high FeO tholeiites, with REE signatures that resemble E-MORB and e\text{N-MORB} = 1.1. The metasedimentary rocks are interpreted as the result of a marine deep-water sedimentation. They have Sm-Nd model ages of 1.9 Ga, and e\text{eNd} = 10.21. The amphibolites and metasediments could represent a fragment of back-arc oceanic crust. The data presented here differ significantly from the original definition of Barbosa et al. (1970) who describe the Araxá Group as a pelitic/psammitic sequence and the collisional granites as a basement complex.

Keywords: Brasília Belt, Neoproterozoic, Araxá Group, Amphibolites, Metasediments, Geochemistry, Sm-Nd isotopes, Back-Arc Basin.

RESUMO
Neste trabalho são apresentados os resultados de estudos geológicos na região do Araxá, Minas Gerais, onde foram originalmente definidos os grupos Araxá, Ibiá e Canastra, pertencentes ao setor meridional da Faixa Brasília. O Grupo Araxá é descrito como um terreno tectonoestratigráfico no sentido de Howell (1993). Compreende uma associação termalizada, composta de duas lâncias inferiores representadas pelos grupos Ibiá e Canastra. As lâncias tectônicas estão estruturadas na Sinfonia de Araxá, uma sub-região regional cujo eixo vai de NW para NE. O terreno Araxá é formado por uma sequência ignea mafica (amfibólios e xisto máficos com rochas metadesmicitas subordinadas) que é cimentada por rochas metadesmicitas dominantemente pelícas. O conjunto foi metanormalizado sob condições do fácies amphibolita perto de 630 Ma e foi intrudido por granitos com assinatura geoquímica colossional (Secur, 1999). Os psammites são estromatos de protolitos basalticos e gabbroicos. Os basálicos são similares a oxicitos de alto FeO, com assinaturas de E-MORB e com valores de e\text{N-MORB} = 1.1. As metasedimentares provavelmente representam sedimentos depositados em águas marinhos profundas. Seus idades estimadas Sm-Nd são de ca. 1.9 Ga, e e\text{Nd} = 10.21. O conjunto representa um fragmento de crosta océanica, que evoluiu a partir de uma fonte mantêlica enriquecida em elementos incompatíveis relativamente ao N-MORB, numa escala de baixo bono, durante o Neoproterozoico. Os dados aqui apresentados representam modificação substancial em relação ao levantamento de Barbosa et al. (1970), e sugerem a restrição da nomenclatura “Grupo Araxá” literalmente a fragmentos de crosta océanica.

Palavras-chave: Faixa Brasília, Grupo Araxá, Amfibolitos, Metasedimentos, Geoquímica, Sm-Nd, Bacia de Reto-Arc.

INTRODUÇÃO
Na região de Araxá foram definidos os grupos Araxá, Canastra e Ibiá (Barbosa 1955, Barbosa et al. 1970), pertencentes ao setor meridional da Faixa Brasília (Fuck 1994). Esta, por sua vez, acha-se posicionada na porção oriental da Província Estrutural Tocantins (Almeida et al. 1977), formando um cinturão orogênico Neoproterozóico que se desenvolveu na borda oeste do Cráton Paleoproterozóico do São Francisco.

colisão. A unidade passou a ser caracterizada como um fragmento de crosta oceânica, e o embasamento cristalino passou a ser reinterpretado como corpos graníticos sin-collisionais intensamente deformados (Seer 1999).

No presente trabalho dá-se ênfase aos anfibolitos e rochas metassedimentares que compõem o Grupo Araxá em sua área-tipo.

A SINFORMA DE ARAXÁ

A Sinforma de Araxá acha-se estruturada em três lascas tectônicas: inferior, intermediária e superior (Seer 1999) (Fig. 1). Cada lasca apresenta arranjo litoestratigráfico interno próprio, reflexo de ambientes tectônicos-sedimentares-igneos diferentes e está limitada por zonas de cisalhamento sub-horizontal e subverticals (Fig. 2).

Deformação e metamorfismo Seer (1999) descreve a história metamórfica e de formação da Sinforma de Araxá através de uma sucessão de eventos, cujo caminho FDI aponta para processos geológicos ocorridos em níveis crustais cada vez mais rasos (Fig. 3). O evento metamórfico principal, M₁, do tipo barrovião, está presente em todas as lascas tectônicas, na inferior alcançando a zona da granada do fácies xisto verde, na intermediária desenvolvendo-se até a zona da clorita e na lasca superior alcançando o fácies anfibolito. O evento M₁...
Figura 2 - Tectonoestratigrafia da Sinformação de Araxá (modificado de Seer 1999).

foi acompanhado de uma deformação D3, marcada por xistosidade S3. O evento RM/D3 foi subdividido em um estágio precoce, D3p, e um estágio tardio, D3t. Ambos estágios desenvolveram-se em contexto colisional, onde zonas de ciasalhamento sub-horizontais provocaram o inbraçamento das lascas, sob regime francamente retrogressivo em fácies xisto verde, desenvolvendo xistosidade milonítica S3. Em seus momentos iniciais, D3p foi acompanhado do alongamento de granitos com assinatura geoquímica de intrusões colisionais. As linhas residuais e de estratificação deste estágio, em combinação com diversos indicadores kinemáticos, mostram que o transporte tectônico das lascas foi para NW/SE. De modo aparentemente semelhante a D3p, processou-se a deformação D4, presente na maioria dos afloramentos, que representa o evento deformacional principal, responsável pela estruturação da Sinformação de Araxá. Durante D4 o transporte tectônico das lascas foi para SE. O evento final, também retrometamórfico, RM/D4, provou o trancamento das estruturas anteriores, e corresponde ao desenvolvimento de zonas de ciasalhamento transcorrentes, subverticalis, sinistrais, sob condições retrometamórficas das fácies xisto verde inferior.

TERRENO ARAXÁ O Terreno Araxá (Fig. 4) representa uma sequência de anfibolitos derivados de rochas ígneas máficas, subordinadamente ultramáficas, capazes por sedimentos detriticos, dominantemente pelíticos (micaxitos e quartzitos), do Grupo Araxá e intrusos por granitos (Seer 1999). A intrusão dos granitos/pegmatitos nas encaixantes e sua posterior milonitização gera xistos feldspáticas milonitizados. Estes xistos, tanto os de origem ígnea máfica, como os de origem sedimentar, contêm fragmentos de pegmatitos e granitos, além de portfólios com micaxitos, quartzo-granadas, quartzo-cloritas e anfibolitos, e mesmo pegmatitos, em meio a bandas com estruturas miloníticas, onde os minerais estão contínuos.

Na região de Araxá, as rochas metamórficas compreendem anfibolitos grossos a finos, clorita-anfibólio xistos e clorita xistos. Além destes, ocorrem rares afloramentos de rochas ultramáficas, como serpentina e anfibólio-talc xistos. Os anfibolitos de granulação grossa lembram protolitos gabroicos, enquanto os finos sugerem protolitos basálticos. Apenas uma amostra apresenta tiques textura porfirítica preservada da deformação, no qual microfenocristais de anfibólio acham-se dispersos em matriz fina de anfibólio e plagioclásio. Os fenocristais de anfibólio (originalmente piroxênio) são euédricos a subeúdricos e não têm orientação preferencial, lembrando a rocha um basalto.

Os anfibolitos são pretos e verde escuros, ocasionalmente com bandas brancas e são constituídos por anfibólio, plagioclásio, granada, quartzo, titânita, clinoclírito, epidoto, clorita, biotita, mica branca,
apatita e minerais opacos. Calcopirita e pirrita foram observadas macroscopicamente. Em uma amostra de anfibolito fina a análise de cinco grãos de minerais opacos através de microsonda eletrônica permitiu a identificação de ilmenita. Análises microscópicas dos anfibolitos são apresentadas na Tabela 1.

Os anfibolitos são homemlada (figura 5) e possivelmente actinolita. Homemlada aparece em prismas alongados, em geral subsídios, com bordos irregulares e bem orientados, especialmente nos termos de granulação mais fina. Suas propriedades óticas indicam possíveis variações composicionais, com pleocomo roto em antracite de castanho esco, castanho claro a verde esco, castanho a verde pálido, castanho pálido a verde e verde pálido a castanho oscurado. Nos anfibolitos grossos foi observada homemlada potálgilíica, com inclusões de plagióclase, minerais opacos e, mais raramente, apatita e zircão, a qual mostra retrometamorfismo para uma associação de quartzo, epidoto, clorita, titanita, clorita, biotita e mica branca. Esta variedade contrasta com a homenlada lipidad e de faces planas de algumas rochas mais finas, que talvez tenha sido preservada do retrometamorfismo.

Provável actinolita, em função de seu equilíbrio com a paragenésis retrometamórfica típica do fácies xisto verde, ocorre como cristais prismáticos e aciculares que crescem às custas da homemlada verde. Apresenta pleocomo forte, variável de castanho a verde escuro azulado e verde pálido a verde azulado. Grãos de plagióclase ocorrem dispersos, intersticiais aos de anfibolito, incluídos neste ou então como agregados em bandas onde o anfibolito é progressionalmenr e quantitativo. Têm bordos irregulares, acham-se saussuflitarizados e apresentam fantasmas de macias polissintéticas. Os raros grãos mais limpos apresentam extinção ondulante e macias polissintéticas deformacionais. Na presença de macias polissintéticas não deformacionais, determinações óticas indicaram composição de albita. Algumas análises realizadas por meio de microsonda eletrônica (figura 6) mostram que grãos de plagióclase gerados durante M, e parcialmente preservados de retrometamorfismo apresentam composição de abundante (Seer 1999). A paragenésis hombrelada + andesina permite concluir que o metamorfose de M, alcançou condições de fácies anfibolito. A occuren ocorre preferencialmente nos fácies mais grossos. Forma porfiroblastos com até 8 mm de diâmetro, com bordos irregulares e interpenetrados com outros minerais, e mesmo quebrados em grãos menores. Os porfiroblastos são normalmente ricos em inclusões de quartzo e minerais opacos, mas anfibolito e plagióclase também podem ocorrer. As inclusões podem estar afinadas em uma foliação interna, curva, indicando que houve rotação dos grãos. A foliação externa, dada pelo paralelismo dos cristais de anfibolito, contorna os grãos de granada. Os porfiroblastos são mais frequentes nas bandas mais ricas em plagióclase.

Os xistos básicos ocorrem como produtos do retrometamorfismo sobre os anfibolitos. São clorita e clorita-actinolita xistos de coloração verde, granulometria fina, com foliação e linhagens bem desenvolvidas, dadas pela orientação preferencial dos cristais aciculares de actinolita. Contêm também plagióclase intensamente saussuflitarizado, epidoto, quartzo, titania, carbonato e minerais opacos. Raramente ocorrem restos de grãos de homemlada parcialmente transformada para actinolita e clorita.

Quando miltomCriterion foi, as rochas metamórficas apresentam gradativa redução no tamanho dos grãos. Os grãos de homemlada passam a com porfiroblastos ovais, retrometamorfizados para actinolita e clorita e massas deptocrinal em castaço escuros, contendo porfiroblastos finos de clorita-epidoto-quartzo-actinolita. Esta matriz contém os porfiroblastos, compondo a foliação miltomCriterion. Sob intensa miltomCriterion, ocorre o desaparecimento dos porfiroblastos. Macroscopicamente, as rochas metamórficas miltomcritadas, muito finas, assemelham-se a filólitos e foram mapeadas genericamente como xistos mágicos. Estas rochas foram confundidas com filólitos da unidade de ilha, pela extrema semelhança sob intemperismo, o que levou à conclusão de que o contato entre os grupos Araxá e Ilha seria gradacional (Paulsen et al. 1974; Pierri 1989).

Os termos ultramáficos compreendem serpentinitos, talco xistos e anfibolito-talco xistos. Nos serpentinitos foi possível observar cristais fantasma de olivina, com formas ovais ou aciculares, totalmente substituídos por serpentina. Esta ocorre igualmente nos espaços intergrãos, apresentando trama não orientada nas lentes preservadas de deformação. Serpentina e talco podem apresentar produtos de retrometamorfismo sobre paragenéses anterior M, que inclui olivina.

Rochas metassedimentares

As rochas metassedimentares do Grupo Araxá compreendem quartzo-mica xistles, mica xistles, granada-quartzo-mica xistles, granada-clorito-mica xistles, quartzitos e quartzitos míclicos. Estas rochas refletem o metamorfose de M, na forma de granulometria mais grossa, caracterizando xistos e quartzitos míclicos. Aos grupos do Grupo Araxá predominam os termos pelíticos sobre os quartzíticos.

Os xistos são formados por mica branca, quartzo, clorita, biotita, granada, cloritoïde e minerais opacos. A paragenésis relacionada a M, é biotita-mica branca-granada-quartzo, portanto sob condições pelo menos de fácies xisto verde - zona da granada. Macroscopicamente, foram observados grãos milimétricos a centímetros de ruelho em alguns xistos. O crescimento destes minerais ocorreu durante D, e gerou xistosidade bem desenvolvida. Granada pode compreender por até 30% em volume e possui diâmetro de até 8 mm. Os grãos estão rotacionados, contendo foliação interna dada pelo arranjamento de inclusões de quartzo e micas e são contornados pela foliação externa. Estão intensamente ferraduras e mostram-se alongados por influência da foliação S. Nas porfiroblastos e nas sombras de pressão crescem a clorita e a mica branca. Granada mostra-se retrometamorfizada para clorita, mica branca e minerais opacos. Macroscopicamente, a granada forma porfiroblastos ovais e pentacídica, com coloração esverdeada-amarelada e, ao microscópio, observam-se restos da granada em meio aos minerais retrometamórficos. Mica branca e biotita acabam-se quase sempre deformadas, com extinção ondulante, endurações e Kim. Biotita foi retrometamorfizada para clorita. Sobre a foliação S, cresceram porfiroblastos de cloritoïde, presenças também no interior de alguns grãos de granada. O cloritoïde é pós-tecnoïde à fase D e pré-tecnoïde à fase D. A xistosidade S, atua-se amplamente transportada pela foliação relacionada à fase deformacional D, A formação de S, deu-se sob condições de retrometamórficos, com geraçã de clorita, mica branca e quartz.
Figura 5 - Diagrama da classificação dos anfibólios cáticos (Deer et al., 1992). AnA = átomos de Na no sitio A; AK = átomos de K no sitio A; TSI = átomos de Si no sitio tetraédrico; Tr = tremolita; Hn = hornblenda; Tm = têxonormativa; Ed = edenita; Pa = pargasita. Círculos abertos representam a composição das amostras finais. Círculos fechados representam amostras selecionadas de anfibólios presentes em anfibólios da Sinfimata de Arraxá. Modificado de Seer (1999).

Figura 6 - Diagrama Ab-An-Or para classificação de foliados. Os círculos representam 20 análises selecionadas de plagioclásios presentes em anfibólios da Sinfimata de Arraxá. a = albita; ol = oligoclásio; and = andesita; la = labradorita; bi = biotita; an = anortito. Modificado de Seer (1999).

Zo e desaparecimento de biotita, granada e cloritoíde. Esta foliação pode chegar a desenvolver bandas compostizacionais, com espessuras submillimétricas, ora mais ricas em clorita, ora em mica branca e mesmo em quartzo. As bandas definem uma foliação miolítica, uma vez que são marcadas por variação no tamanho dos grãos e desenvolvimento de superfície S.C. O quarto arranja-se em fitas e em agregados alinhados, sempre com extensão ondulante, desenvolvendo subgrãos e recristalizando para grãos menores. Seus contatos são irregulares e interpenetrados. Os quartzitos possuem mica branca, além do quartzo, mas podem conter também cloritoíde, granada, clorita e minerais opacos. Granada quase sempre está retrometamorfolizada para um agregado de clorita, quartzo e minerais opacos. Quartzo forma agregados irregulares e localmente poligonais. Os cristais têm extensão ondulante, formam subgrãos e a recristalização por migração de bordos é comum.

GEOQUÍMICA DOS ANFIBÓLIOS Foram selecionadas 12 amostras de anfibólios para estudos litogeocronológicos (ver figura 4 para localização). Os critérios para seleção foram a ausência de efeitos intempericais, homogeneidade textural, ausência de veios e de fraturas preenchidas por minerais secundários e representatividade geológica. As amostras foram preparadas e analisadas para elementos maiores e traços no Laboratório de Geoquímica da Universidade de Brasília. SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, CaO, P₂O₅, Zn, Co, Ni, Cr, V, Be, Cu, Y, Sr e Ba, foram determinados por espectrometria de emissão atômica com fonte de plasma (ICPAES), FeO por volumetria, Na₂O e K₂O por espectrofotometria de absorção atômica e perda ao fogo por gravimetria. Os elementos terras raras (ETR) foram separados por troca iônica utilizando o método de microlúmenis proposto por Oliveira e Boventura (1998) e determinados em ICPAES.

Os anfibólios de Arraxá apresentam teores de SiO₂ variando de 43,79 a 49,29%, mostram pequena variação de Al₂O₃, com valores entre 11,29 e 13,94%, e de elevados valores de Fe₂O₃ total (9,82 a 13,94%), TiO₂ (1,65 a 4,77%) e MnO (0,2 a 0,36%). Podem ou não apresentar quartzo ou olivina normativos, mas todos têm hiperstênio normativo, assemelhando-se a basaltos teólicos sub saturados a leve mente saturados em SiO₂ (Condie, 1989). A amostra 485 apresenta SiO₂ composta com rochas ultrabásicas, mas MgO é relativamente baixo, o que indica a possibilidade de uma modificações química pós-magmática. Algumas amostras têm quartzo modal como produto metamórfico.

Os diagramas da figura 7 indicam que os anfibólios de Arraxá não apresentam alteração química significativa, pelo menos com relação a Na₂O, K₂O e CaO, considerados mais móveis que os demais oxídeos em diversos ambientes geológicos. As análises químicas de anfibólios de outras regiões da Faixa Brasília, obtidas da literatura e utilizadas para comparação com os anfibólios de Arraxá, foram submetidas aos mesmos critérios de seleção, eliminando-se amostras situadas nos campos de rochas alteradas dos diagramas da figura 7. Além disso, foram descartadas análises publicadas com teores analíticos inferiores a 91% ou superiores a 101% para efeito de construção dos diagramas geoquímicos. Os elementos maiores de todas as análises restantes, tanto dos anfibólios de Arraxá quanto dos de outras regiões, foram recalculados em base anidra.

Valeriano (1992) identificou, na região de Passos, uma bimodalidade nos valores de TiO₂ dos anfibólios, definindo duas populações: uma de alto (>2%) e outra de baixo TiO₂ (<2%), separadas por intervalo composicional. Este caráter bimodal tende a repetir-se na região de Arraxá e, possivelmente, em Abadiania, mas não está tão bem definido nas amostras de Abadia dos Dourados (Fig. 8). Os anfibólios de Arraxá distinguem-se por teores mais elevados de TiO₂ que os das outras regiões.

Os padrões de distribuição de alguns elementos maiores e traços podem ser apreciados nos diagramas de variação da figura 9. Para efeitos de comparação, indicou-se os campos composicionais dos anfibólios de outras regiões da Faixa Brasília em todos os diagramas, e elaborou-se tabela com as médias para elementos maiores e menores (Tabela 3).

Os teores de TiO₂ dos anfibólios de Abadia dos Dourados situam-se em posições intermediárias entre os anfibólios de alto e baixo TiO₂ de Passos (Fig. 9), e os anfibólios de todas as localidades mostram tendência de aumento dos valores de TiO₂ com a diminuição do Mg#. Considerando-se que os anfibólios em questão representam produtos igneous, e que as proporções entre os elementos não devem ter variado muito em função de processos de alteração pós-magmática (expulsião, hidratação metamórfica, deformação com retratometamorfose e interpenetração), pode-se dizer que as tendências gerais para TiO₂, Al₂O₃, Fe₂O₃ total, CaO e P₂O₅ assemelham-se àquelas de processos de cristalização fracionada. Isso sugere que os
grupos de alto TiO₂ podem representar basaltos mais fracionados que os de baixo TiO₂, uma vez que o Ti tem comportamento de elemento incompatível em basaltos (Hess 1989), tendo a se enriquecer nos termos mais evoluídos.

Nos diagramas de variação (Fig. 9) foram plotados os campos composicionais de alguns elementos-trão das rochas de Araxá, junto com os dados disponíveis para as regiões de Passos, Abadia dos Dourados e Abadiania. Os padrões de distribuição dos elementos-trão são distintos para as diversas regiões. Os antibolitos de Passos e de Araxá se diferenciam no diagrama Nb x Mg#, ambos apresentando enriquecimento de Nb com a diminuição de Mg#, mas os últimos apresentando enriquecimento mais pronunciado que os primeiros. O Nb, a semelhança do Y, mostra-se mais incompatível nos antibolitos de Araxá do que nos de Passos. O Cr e Ni tendem a diminuir com o decréscimo de Mg# em todas as regiões, conforme esperado de processos de cristallização fracionada.

Os antibolitos da região de Araxá formam-se a partir de protólitos basálticos. O forte enriquecimento de FeO(FeO) em relação a MgO denota sua tendência toleítica (Fig. 10), acompanhando a tendência dos basaltos toleíticos de cadeias meso-océanicas. No diagrama da figura 11 as análises caem no campo dos tocítos de alto Fe. Estes padrões são semelhantes aos dos antibolitos de Passos, embora estes últimos mostrem maior espalhamento nos diagramas (Valeriano 1992), e também são verificados para as regiões de Abadia dos Dourados e Abadiania. Os ETR dos antibolitos de Araxá apresentam padrões de distribuição uniformes nas 8 amostras analisadas (Fig. 12). Os elementos terras raras (ETR) estão ligeiramente enriquecidos em relação aos elementos terras raras pesados (ETRP), com (La/Yb)R = 4,74. Considerando-se a razão (La/Yb)R os valores dos antibolitos de Araxá (3,15 a 9,67) aproximam-se dos de E-MORB (4,8 a 6,9) e distanciavam-se dos de N-MORB (0,35 a 1,1) e de T-MORB (1,7 a 4,3). Isso indica que o orogênio em região de manchas enriquecida em ETRL relativamente ao ETR. Com e0 = de +1,1 e razão 129Sm/147Nd = 0,166, os antibolitos de Araxá caem no campo dos basaltos toleíticos, mas afastam-se muitos dos campos de MORB com e0 = +10 e 147Sm/144Nd variando entre 0,13 e 0,32 (DePaolo 1988). O baixo valor de e0 pode estar indicando uma fonte mais enriquecida em elementos incompatíveis do que a fonte que dá origem aos basaltos tipo MORB, ou a mistura de fontes empobrecidas com enriquecidas.

A comparação com os padrões de ETR da região da Napppe de Passos mostra que nas duas áreas os antibolitos apresentam enriquecimento em ETRL em relação aos ETR (Fig. 13). O comportamento dos grupos de alto e baixo TiO₂ também é semelhante, mas com os antibolitos de Araxá possuem a leve anomalia negativa de Eu apresentada pelos da região de Passos. Os antibolitos de Passos foram subdivididos por Valeriano (1992) e Valeriano e Simões (1997) em três grupos composicionais: a) baixo Ti não-fracionado, b) baixo Ti fracionado e c) alto Ti. Todos têm anomalias negativas de Eu e raras La/Lu de 10 a 14, 25 a 83 e 55 a 111, respectivamente. As anomalias negativas de Eu indicam que os magmas foram depleitados no elemento durante processos de cristallização fracionada de plagioclásio (Hess 1989), o que pode ter sido o caso dos antibolitos de Passos, contrariando os de Araxá que não mostram tais anomalias.
anomalias. Nos antibióticos de Araxá o grupo de baixo Ti tende a apresentar valores mais baixos de ETR do que o grupo de alto Ti. A amostra de mais alto Ti tem La/Yb = 5,17 e a de mais baixo Ti tem La/Yb = 4,67. Esta tendência também é observada nos antibióticos de Passos.

GOECRONOLOGIA
Os recursos do método Sm-Nd possibilitam uma avaliação das idades modelo das diversas rochas da região e dão uma idéia sobre as características das áreas fonte tanto dos magmas como dos sedimentos. Para a região de Araxá foram analisadas duas amostras de afloramentos contíguos, uma de granada antibiótico e outra de granada-mica xisto, ambas do Grupo Araxá, com a finalidade de obter a idade do metamorfismo principal.

As amostras foram analisadas no Laboratório de Geocronologia da Universidade de Brasília. Os resultados analíticos acham-se reproduzidos na Tabela 4.

Isócronas Sm-Nd e o metamorfismo principal
O metamorfismo principal M₁ foi datado a partir de duas isócronas obtidas de minerais e rocha total em amostras do ponto 318 (ver figura para localização). No local amostrado ocorreu uma camada de granada antibiótico médio a fino, intercalada a granada-mica xisto e clarita antibiótico xistas que, estratigráficamente, representam a porção superior da sequência metagenética, na interface com a sequência dominante metasedimentar. O granada-mica xisto fornece idade de 637 ± 12 Ma e o granada antibiótico apresentou idade de 596 ± 32 Ma (Fig. 14). Estas idades são interpretadas como a época de cristalização dos minerais metamórficos durante o metamorfismo M₁.

Idades modelo e geoquímica do Nd
A amostra analisada de granada-mica xisto do Grupo Araxá tem idade modelo de 1,95 Ga. Deve ter-se formado a partir de detritos sedimentares oriundos de fontes mais velhas, situadas, possivelmente, no Cráton do São Francisco. Seu valor de ε_Nd(T) = -10,21 (Fig. 15), portanto indicando elevada resistência crustal para estes metasedimentos. Metasedimentos de outros locais da Faixa Brasilia ligeiros ao Grupo Araxá têm T_Pm = 1,3 Ga, indicando proveniência a partir de fontes mais jovens ligadas possivelmente aos arcos magmáticos do oeste de Goiás (Pimentel et al. 2000).

A amostra de antibiótico apresenta razão Sm/Nd = 0,275 e valor de ε_{Nd}(T) = -1,10, próximo do CHUR (Fig. 15), implicando em uma origem a partir de fusão do manto superior. Seus valores de Sm e Nd em ppm e a razão Sm/Nd aproximam-se mais dos valores normais para basaltos de cadeias meso-oceânicas (MORB). No entanto, os valores de Sm e Nd do antibiótico do Grupo Araxá são intermediários entre os de MORB e os toleíticos continentais. Segundo Nicholls (1989), enquanto as seções de peridotitos e de gabros de diversos ophiolitos têm valores de ε_{Nd}(T) = +7 a +12, a assimetria geoquímica de MORB, as secções vulcânicas que capeiam as anteriores apresentam padrões muito variáveis para Terras Raras e Nd que refletem o ambiente oceânico original, podendo divergir de tendências tipo MORB. Isto está de acordo com estudos realizados em arcos de Ilhas, tanto em situações anteriores como de rústico-arcos.
Figura 9 - Diagramas de variação de alguns elementos maiores e traços em relação a Mg# (MgO/(MgO + FeO) para os anfibolitos de Araxá (símbolo chato = grupo de alto TiO2; símbolo vazio = grupo de baixo TiO2) em comparação com os campos compositenciais dos anfibolitos de Passus (Valeriano 1992; contínuo escuro = grupo de alto TiO2; contínuo claro = grupo de baixo TiO2). Abadia dos Donadivas (Broo et al. 1992; pautilhados) e Abaújatia (Strieder 1994; tracejado escuro = grupo de alto TiO2; tracejado claro = grupo de baixo TiO2).

Figura 10 - Diagrama AFM mostrando a forte tendência toleítica dos anfibolitos de Araxá (círculos vazados = baixo TiO2; círculos cheios = alto TiO2). A área hachurada representa anfibolitos de outras localidades da Faixa Brasilia.

Deve-se ressaltar que as médias de basaltos obtidas na bibliografia referem-se a rochas relativamente jovens e representam termos extremos, havendo toda uma transição geoquímica em termos práticos. Segundo Hydman (1985) isso é devido a graus diferentes de alteração das rochas, definindo-se zonas de transição entre campos compostos nos diagramas de elementos menores. De qualquer modo, aceitando-se que as médias calculadas na tabela 5 representam efetivamente tipos basálticos específicos, pode-se dizer que os antibióticos de Araxá são mais empobrecidos em SiO₂ que os basaltos em geral, aproximando-se dos valores de basaltos oceânicos alcalinos, basaltos oceânicos de alto Al₂O₃ e de basaltos alcalinos de rifts continentais. Mas seus altos valores de TiO₂, Fe₂O₃, FeO e seus baixos valores de Al₂O₃ e CaO, afastam-nos de todas as médias de basaltos mundiais. Também notáveis são as altas concentrações de Nb nos

| Tabela 3 - Valores mínimos, máximos e médias para elementos menores e traços dos antibióticos das regiões de Passos (Valeriano 1992), Araxá (Seer 1999), Abadia dos Dourados (Brod et al. 1992) e Abadiânia (Srieder 1994). Em parênteses está o número de amostras estudadas.

<table>
<thead>
<tr>
<th></th>
<th>Passos (17)</th>
<th>Araxá (12)</th>
<th>Abadia dos Dourados (16)</th>
<th>Abadiânia (10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>45,7</td>
<td>51,8</td>
<td>49,41</td>
<td>49,83</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0,92</td>
<td>3,4</td>
<td>2,1</td>
<td>2,1</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12,5</td>
<td>16,7</td>
<td>14,88</td>
<td>14,29</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2,9</td>
<td>9,3</td>
<td>6,11</td>
<td>6,11</td>
</tr>
<tr>
<td>FeO</td>
<td>4,2</td>
<td>12,2</td>
<td>7,02</td>
<td>7,02</td>
</tr>
<tr>
<td>MnO</td>
<td>0,15</td>
<td>0,29</td>
<td>0,21</td>
<td>0,21</td>
</tr>
<tr>
<td>MgO</td>
<td>3,3</td>
<td>8,7</td>
<td>5,62</td>
<td>5,62</td>
</tr>
<tr>
<td>CaO</td>
<td>54,1</td>
<td>11,5</td>
<td>8,24</td>
<td>8,24</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0,78</td>
<td>4,6</td>
<td>2,51</td>
<td>2,51</td>
</tr>
<tr>
<td>K₂O</td>
<td>0,14</td>
<td>2,5</td>
<td>0,85</td>
<td>0,85</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0,05</td>
<td>0,72</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>Ni</td>
<td>27</td>
<td>236</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>V</td>
<td>160</td>
<td>470</td>
<td>246</td>
<td>246</td>
</tr>
<tr>
<td>Cr</td>
<td>68</td>
<td>411</td>
<td>159</td>
<td>159</td>
</tr>
<tr>
<td>Co</td>
<td>47</td>
<td>103</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Zn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cu</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ba</td>
<td>45</td>
<td>1164</td>
<td>366</td>
<td>366</td>
</tr>
<tr>
<td>Sr</td>
<td>47</td>
<td>510</td>
<td>198</td>
<td>198</td>
</tr>
<tr>
<td>Y</td>
<td>10</td>
<td>35</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Nb</td>
<td>10</td>
<td>42</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>La</td>
<td>2,44</td>
<td>45,21</td>
<td>17,96</td>
<td>17,96</td>
</tr>
<tr>
<td>Ce</td>
<td>8,13</td>
<td>100,30</td>
<td>41,94</td>
<td>41,94</td>
</tr>
<tr>
<td>Nd</td>
<td>5,98</td>
<td>54,70</td>
<td>23,58</td>
<td>23,58</td>
</tr>
<tr>
<td>Sm</td>
<td>1,93</td>
<td>11,27</td>
<td>5,31</td>
<td>5,31</td>
</tr>
<tr>
<td>Eu</td>
<td>0,54</td>
<td>2,41</td>
<td>1,30</td>
<td>1,30</td>
</tr>
<tr>
<td>Gd</td>
<td>2,26</td>
<td>9,37</td>
<td>4,96</td>
<td>4,96</td>
</tr>
<tr>
<td>Dy</td>
<td>2,84</td>
<td>9,44</td>
<td>5,02</td>
<td>5,02</td>
</tr>
<tr>
<td>Ho</td>
<td>0,63</td>
<td>1,85</td>
<td>1,04</td>
<td>1,04</td>
</tr>
<tr>
<td>Er</td>
<td>1,91</td>
<td>4,75</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Yb</td>
<td>1,59</td>
<td>4,20</td>
<td>2,46</td>
<td>2,46</td>
</tr>
<tr>
<td>Lu</td>
<td>0,18</td>
<td>0,56</td>
<td>0,31</td>
<td>0,31</td>
</tr>
</tbody>
</table>

Figura 12 - Diagrama de ETR para os antibióticos de Araxá. Pontos claros = grupo de alto TiO₂; pontos vazados = grupo de baixo TiO₂. Modificado de Seer (1999).

antibolitos de Araxá. A razão La/Yb de 6,5 os aproxima mais dos tectónicos do rift continental (7,5) e os afasta dos demais basaltos.

Utilizando-se curvas médias de ETR de basaltos provenientes de ambientes tectônicos bem caracterizados em comparação com as curvas de ETR dos antibolitos de Araxá (Fig. 16), deduz-se que estes mostram comportamento muito distinto de N-MORB e basaltos de arcos de ilhas, assemelhando-se às curvas de basaltos calci-alcálicos, basaltos de rift continental, E-MORB e de basaltos de bacias de retro-arc (BABB), todas apresentando enriquecimento de ETRP em relação aos ETRP. Segundo Condie (1989) empobrecimentos ou enriquecimentos em Eu são ausentes ou muito pequenos na maioria dos basaltos.

Dos diagramas multielementares (Fig. 17), deduz-se que os antibolitos de Araxá aproximam-se mais da curva dos basaltos E-MORB. Mostram padrões diferentes em relação aos padrões de N-MORB, T-MORB, basaltos de ilhas oceânicas e de basaltos de rift continental. Comparativamente aos BABB (Couzens et al., 1994), os antibolitos de Araxá têm valores mais elevados de Nb. Além disso, em relação aos elementos maiores, os BABB têm valores bem mais elevados de Al₂O₃ e bem mais baixos de FeO do que os antibolitos de Araxá (Price et al., 1990). Deve-se destacar que, no caso de BABB,

autores como Price et al. (1990) propõem que eles não representam um termo final, e sim um conjunto de magmas originados por mistura de fusões derivadas tanto do processo de subducção como do manto litosférico, podendo resultar composições muito variadas. As evidências apresentadas e descritas permitem concluir que os antibolitos de Araxá distinguem-se de outros antibolitos relacionados ao Grupo Araxá, como os de Passos, Abadia dos Dourados e

Figura 14 - Isócronas Sm-Nd em granada-mica xisto (a) e granada-antibolito (b) do Terreno Araxá. RT= rocha total; Gr= granada; Anf= antibolito; Tit= titânia. (Modificado de Seer, 1999).

Figura 15 - Composição isotópica de Nd para as amostras de granada-antibolito e granada-mica xisto do Terreno Araxá (com base em dados de Pinniel et al., 1999b).

Figura 16 - Comparação entre os padrões de distribuição dos ETR dos antibolitos de Araxá (área lútrilhada) e basaltos de outros ambientes tectônicos. Basaltos de arcos de ilhas (IAB), basaltos de rift continental (CRB), basaltos de cadeias oceânicas (MORB) (dados de Condie, 1989), basaltos de bacias de retro-arc (BABB) (dados de Price et al., 1990) e basaltos tipo MORB enriquecidos (E-MORB) (dados de Henderson, 1984).

Tabela 4 - Dados isotópicos Sm-Nd para o Terreno Araxá (modificado de Seer, 1999).

<table>
<thead>
<tr>
<th>Amostra</th>
<th>Litologia/mineral</th>
<th>Unidade</th>
<th>Sm (ppm)</th>
<th>Nd (ppm)</th>
<th>²⁴⁷Sm/²⁴⁴Nd</th>
<th>²¹⁴Nd/²⁴⁴Nd</th>
<th>ENd</th>
<th>TDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>318a</td>
<td>granada mica xisto</td>
<td>Grupo Araxá</td>
<td>13,738</td>
<td>71,762</td>
<td>0,1157</td>
<td>0,1827</td>
<td>0,511781 (19)</td>
<td>-10,21</td>
</tr>
<tr>
<td>318a</td>
<td>granada</td>
<td>Grupo Araxá</td>
<td>2,1396</td>
<td>1,871</td>
<td>0,6914</td>
<td>0,514185 (14)</td>
<td>-10,21</td>
<td>1,9</td>
</tr>
<tr>
<td>318c</td>
<td>granada antibolito</td>
<td>Grupo Araxá</td>
<td>3,4039</td>
<td>14,179</td>
<td>0,1664</td>
<td>0,512569 (19)</td>
<td>-10,21</td>
<td>1,9</td>
</tr>
<tr>
<td>318c</td>
<td>granada</td>
<td>Grupo Araxá</td>
<td>6,294</td>
<td>1,273</td>
<td>0,3448</td>
<td>0,513225 (25)</td>
<td>-10,21</td>
<td>1,9</td>
</tr>
<tr>
<td>318e</td>
<td>antibolito</td>
<td>Grupo Araxá</td>
<td>155,292</td>
<td>750,18</td>
<td>0,1251</td>
<td>0,512346 (13)</td>
<td>-10,21</td>
<td>1,9</td>
</tr>
<tr>
<td>318c</td>
<td>titânia</td>
<td>Grupo Araxá</td>
<td>45,3</td>
<td>0,707</td>
<td>0,131</td>
<td>0,512319 (19)</td>
<td>-10,21</td>
<td>1,9</td>
</tr>
<tr>
<td>318c</td>
<td>cafellitite</td>
<td>Grupo Ibiá</td>
<td>5,6561</td>
<td>26,326</td>
<td>0,1299</td>
<td>0,512322 (18)</td>
<td>-10,21</td>
<td>1,9</td>
</tr>
<tr>
<td>318c</td>
<td>cafellitite</td>
<td>Grupo Ibiá</td>
<td>12,036</td>
<td>6,2</td>
<td>0,1174</td>
<td>0,512305 (22)</td>
<td>-10,21</td>
<td>1,9</td>
</tr>
<tr>
<td>318a</td>
<td>quartzo</td>
<td>Grupo Canasta</td>
<td>0,365</td>
<td>1,823</td>
<td>0,1210</td>
<td>0,511762 (25)</td>
<td>-12,77</td>
<td>2,2</td>
</tr>
</tbody>
</table>
Abadia, no detalhe do comportamento dos elementos maiores e menores. Tomado em conjunto, o comportamento geral dos anfibólitos da Faixa Brasílica em diagramas de variação, e o comportamento dos anfibólitos de Araxá e de Passos em diagramas de terras raras sugerem que as características observadas poderiam estar relacionadas a diferentes estágios de diferenciação magnmática. A hipótese de fracionamento de magma rico em TiO₂, a partir de magma com baixo TiO₂, a partir de fonte homogênea, foi testada por Correia e Girardi (1989) para os anfibólitos de Cássia, situados no mesmo contexto dos anfibólitos de Passos, e descartada. Aquelas autoras defendem uma origem a partir de um manto heterogêneo para estes grupos de alto e baixo TiO₂. Para Valeriano e Simões (1997), estes grupos de anfibólitos de alto e baixo TiO₂ representam basaltos gerados num contexto de extensão continental (basaltos continentais de plateu), mas também caracterizaram um grupo que possui similaridade com basaltos tipo MORB, representando o início de geração de um assolho oceânico no setor meridional da Faixa Brasílica. A hipótese de origem dos anfibólitos do Grupo Araxá a partir de um manto heterogêneo é, portanto, plausível, mas deverá ser investigada com maior detalhe, especialmente em relação a dados isotópicos, o que não foi possível neste estudo.

De qualquer modo, os dados obtidos sugerem que a origem dos anfibólitos de Araxá esteve ligada provavelmente à fonte enriquecida em elementos incompatíveis, semelhante, em alguns aspectos, à fonte manifastética que originou os basaltos tipo E-MORB, o que é corroborado pela geoquímica isotópica de Nd. Deste modo, é possível imaginar um contexto oceânico similar a E-MORB para a geração dos anfibólitos de Araxá e, portanto, considerá-los possíveis fragmentos oofiliticos. A associação dos anfibólitos com fragmentos de rochas ultramáficas, sua ampla distribuição espacial e seu predomínio sobre os sedimentos pelíticos associados remetem esta interpretação.

A complexidade do problema é destacada por Nicolas (1989) ao analisar diversas sequências oofiliticas. Segundo aquele autor, enquanto as seções mais profundas dos oofilitos mostram assimetrias de EFR e isótopos similares às de MORB, as seções vulcânicas superiores apresentam padrões extremamente variáveis que podem refleter a história evolutiva subsequente à sua formação. Padrões variáveis de EFR são comuns nas seções vulcânicas de oofilitos, incluindo tendências tipo MORB, e tendências empobrecidas e enriquecidas em ETR.

CONCLUSÕES O Grupo Araxá, em seu área-tipo, é representado por rochas metamáficas e, subordinadamente, por rochas metassedimentares, predominantemente pelíticas, ambas intrudidas por granitos com assinatura geoquímica collisional. As primeiras compreendem desde anfibólitos grossos a finos (metabasálios), clorita-anfibólitos xístos e serpenítonas. Além destes, ocorrem raros afloramentos de rochas ultramáficas como serpentinitas e anfibólitos xístos. As rochas metassedimentares são representadas por mica xístos, quartzo-mica xístos, granada-quarto-mica xístos, granada-clorito-quarto-mica xístos, quartzo e quartzo-micas. Os anfibólitos representam basaltos toleíticos ricos em FeO, gerados a partir de fonte mantélica (FNd(T) = 1,10) mais enriquecida em ele-

Figura 17 - Comparação entre os padrões de distribuição de elementos tro-çado dos anfibólitos de Araxá (área Richard) e basaltos de outros ambientes tectónicos. Basaltos de áreas de ilhas (IAB), basaltos de rift continentais (CRB), basaltos tipo MORB transicionais (T-MORB), basaltos de ilhas oceanicas (OIB) e basaltos tipo MORB enriquecidos (E-MORB). Dados extrados de Condie (1989).

Tabela 5. Médias de análises químicas para basaltos normais de cadeias mero-oceânicas (N-MORB), de arcas de ilhas (IAB), de rifts continentais (CRB), toleíticos de ilhas oceanicas (OIB), toleíticos de alta alumina (CAB), alcalinos oceanicos (OAB) e alcalinos de rifts continentais (CRAB), segundo Condie (1989) e para toleíticos continentais (TC), toleíticos oceanicos (TO) e alcalinos-basaltos (AB) segundo Hyndman (1985) para comparação com dados dos anfibólitos de Araxá.
mentos incomparáveis do que a fonte que dá origem aos basaltos tipo MORB. Assim, o basalto tipo E-MORB e podem representar, deste modo, um fragmento de crosta oceânica. As rochas metassedimentares, com TDM = 1,9 Ga, provêm de áreas situadas no Crânto do São Francisco à leste, e compõem a camada superior do assaulho oceânico. Em outros locais da Faixa Brasília, metassedimentares ligados ao Grupo Araxá têm TDM = 1,3 Ga, indicando proveniência a partir de fontes mais jovens ligadas possivelmente aos arcos magmáticos do oeste do Goiás (Pimentel et al. 2000).

As características geocinéticas dos antibiólitos e a bimodalidade das idade modelo Sm-Nd dos metasedimentares permite imaginar um quadro geotectônico envolvendo a existência de uma bacia oceanica de retro-arco, à semelhança da proposta de Pimentel et al. (1999a), posicionada entre uma margem passiva a leste e um arco vulcânico a oeste. Segundo estes mesmos autores a formação desta bacia de retro-arco teria se processado entre 1,2 e 0,9 Ga e a deposição principal dos metasedimentares do Grupo Araxá teria sido entre 0,9 e 0,7 Ga.

O metamorfismo principal M1 ocorreu em torno de 630 Ma com base em isócronos Sm-Nd. Seguiu-se processo de colisão continental acompanhado da intrusão de granitos colossinais, que foi responsável pela estruturação tectônica final da região.

Os dados aqui apresentados constituem modificação substancial em relação ao levantamento de Koons et al. (1970), e sugerem a restrição da utilização do termo “Grupo Araxá”, unicamente a fragmentos de crosta oceânica. No entanto, o emprego da metodologia de terrenos tecnometestratigráficos, com a introdução do termo “Terreno Araxá”, desvinculando-o geneticamente dos Terrenos Ibitã e Canastara (Sears 1999) coloca em discussão a necessidade do abandono temporário da terminologia estratigráfica clássica da Faixa Brasília. Antes que um retrocesso, a proposta visa gerar certa grau de liberdade na abordagem dos diversos segmentos que compõem a Faixa, e seriam orientador para o estabelecimento imediato de seus vínculos geológicos, e sob um ponto de vista holístico.

Agradecimentos
Este artigo é parte da Tese de Doutorado do primeiro autor que agradece a CAPES pela concessão de uma bolsa de doutorado. Os autores são grato ao CNPq pela concessão de bolsas de pesquisa, e ao Instituto de Geociências da USP pelo suporte físico e laboratorial. A FAP-DF (Proc. 193.000.068/95) contribuiu para obtenção dos dados isótopicos. Também agradecem as comissões e sugestões de dois revisores anônimos da RBG.

Referências

