INTRODUCTION

The discovery in 1980 of high grade residual gold ore drew a large number of garimpeiros to the Cumaru region in southern Carajás Province of northern Brazil (Fig. 1). The establishment of the Cumaru Project by the Federal Government in the early 80’s to control gold production, led to heightened garimpo activities. However, the deepening of the garimpo pits and the progressive mining of the residual high grade ore led to the dismantling of the Cumaru Project, making way for organized company mining. The search for primary gold ores was started in the early eighties by the Brumadinho Mining but was soon abandoned, and at the end of the decade Gradaús greenstone belt was described as a new gold deposit by the Department of Geology, Oceanography Centre -University of Southampton, a number of mostly small deposits hosted by Archean granitoid stocks within the Carajás greenstone belt (Fig. 1). The establishment of the Cumaru Project by the Federal Government in the early 80’s to control gold production, led to heightened garimpo activities. However, the deepening of the garimpo pits and the progressive mining of the residual high grade ore led to the dismantling of the Cumaru Project, making way for organized company mining. The search for primary gold ores was started in the early eighties by the Brumadinho Mining but was soon abandoned, and at the end of the decade Gradaús greenstone belt, an older gr enestone belt within the Carajás greenstone belt, an older gr enestone belt within the Carajás greenstone belt, has been described as a new gold deposit by the Department of Geology, Oceanography Centre -University of Southampton, a number of mostly small deposits hosted by Archean granitoid stocks within the Carajás greenstone belt (Fig. 1). The establishment of the Cumaru Project by the Federal Government in the early 80’s to control gold production, led to heightened garimpo activities. However, the deepening of the garimpo pits and the progressive mining of the residual high grade ore led to the dismantling of the Cumaru Project, making way for organized company mining. The search for primary gold ores was started in the early eighties by the Brumadinho Mining but was soon abandoned, and at the end of the decade Gradaús greenstone belt, an older gr enestone belt within the Carajás greenstone belt, has been described as a new gold deposit by the Department of Geology, Oceanography Centre -University of Southampton, a number of mostly small deposits hosted by Archean granitoid stocks within the Carajás greenstone belt (Fig. 1). The establishment of the Cumaru Project by the Federal Government in the early 80’s to control gold production, led to heightened garimpo activities. However, the deepening of the garimpo pits and the progressive mining of the residual high grade ore led to the dismantling of the Cumaru Project, making way for organized company mining. The search for primary gold ores was started in the early eighties by the Brumadinho Mining but was soon abandoned, and at the end of the decade Gradaús greenstone belt, an older gr enestone belt within the Carajás greenstone belt, has been described as a new gold deposit by the Department of Geology, Oceanography Centre -University of Southampton, a number of mostly small deposits hosted by Archean granitoid stocks within the Carajás greenstone belt (Fig. 1). The establishment of the Cumaru Project by the Federal Government in the early 80’s to control gold production, led to heightened garimpo activities. However, the deepening of the garimpo pits and the progressive mining of the residual high grade ore led to the dismantling of the Cumaru Project, making way for organized company mining. The search for primary gold ores was started in the early eighties by the Brumadinho Mining but was soon abandoned, and at the end of the decade Gradaús greenstone belt, an older gr enestone belt within the Carajás greenstone belt, has been described as a new gold deposit by the Department of Geology, Oceanography Centre -University of Southampton, a number of mostly small deposits hosted by Archean granitoid stocks within the Carajás greenstone belt (Fig. 1). The establishment of the Cumaru Project by the Federal Government in the early 80’s to control gold production, led to heightened garimpo activities. However, the deepening of the garimpo pits and the progressive mining of the residual high grade ore led to the dismantling of the Cumaru Project, making way for organized company mining. The search for primary gold ores was started in the early eighties by the Brumadinho Mining but was soon abandoned, and at the end of the decade Gradaús greenstone belt, an older gr enestone belt within the Carajás greenstone belt, has been described as a new gold deposit by the Department of Geology, Oceanography Centre -University of Southampton, a number of mostly small deposits hosted by Archean granitoid stocks within the Carajás greenstone belt (Fig. 1). The establishment of the Cumaru Project by the Federal Government in the early 80’s to control gold production, led to heightened garimpo activities. However, the deepening of the garimpo pits and the progressive mining of the residual high grade ore led to the dismantling of the Cumaru Project, making way for organized company mining. The search for primary gold ores was started in the early eighties by the Brumadinho Mining but was soon abandoned, and at the end of the decade Gradaús greenstone belt, an older gr enestone belt within the Carajás greenstone belt, has been described as a new gold deposit by the Department of Geology, Oceanography Centre -University of Southampton, a number of mostly small deposits hosted by Archean granitoid stocks within the Carajás greenstone belt (Fig. 1). The establishment of the Cumaru Project by the Federal Government in the early 80’s to control gold production, led to heightened garimpo activities. However, the deepening of the garimpo pits and the progressive mining of the residual high grade ore led to the dismantling of the Cumaru Project, making way for organized company mining. The search for primary gold ores was started in the early eighties by the Brumadinho Mining but was soon abandoned, and at the end of the decade Gradaús greenstone belt, an older gr enestone belt within the Carajás greenstone belt, has been described as a new gold deposit by the Department of Geology, Oceanography Centre -University of Southampton, a number of mostly small deposits hosted by Archean granitoid stocks within the Carajás greenstone belt (Fig. 1). The establishment of the Cumaru Project by the Federal Government in the early 80’s to control gold production, led to heightened garimpo activities. However, the deepening of the garimpo pits and the progressive mining of the residual high grade ore led to the dismantling of the Cumaru Project, making way for organized company mining. The search for primary gold ores was started in the early eighties by the Brumadinho Mining but was soon abandoned, and at the end of the decade Gradaús greenstone belt, an older gr enestone belt within the Carajás greenstone belt, has been described as a new gold deposit by the Department of Geology, Oceanography Centre -University of Southampton, a number of mostly small deposits hosted by Archean granitoid stocks within the Carajás greenstone belt (Fig. 1). The establishment of the Cumaru Project by the Federal Government in the early 80’s to control gold production, led to heightened garimpo activities. However, the deepening of the garimpo pits and the progressive mining of the residual high grade ore led to the dismantling of the Cumaru Project, making way for organized company mining. The search for primary gold ores was started in the early eighties by the Brumadinho Mining but was soon abandoned, and at the end of the decade Gradaús greenstone belt, an older gr enestone belt within the Carajás greenstone belt, has been described as a new gold deposit by the Department of Geology, Oceanography Centre -University of Southampton, a number of mostly small deposits hosted by Archean granitoid stocks within the Carajás greenstone belt (Fig. 1). The establishment of the Cumaru Project by the Federal Government in the early 80’s to control gold production, led to heightened garimpo activities. However, the deepening of the garimpo pits and the progressive mining of the residual high grade ore led to the dismantling of the Cumaru Project, making way for organized company mining. The search for primary gold ores was started in the early eighties by the Brumadinho Mining but was soon abandoned, and at the end of the decade Gradaús greenstone belt, an older gr enestone belt within the Carajás greenstone belt, has been described as a new gold deposit by the Department of Geology, Oceanography Centre -University of Southampton, a number of mostly small deposits hosted by Archean granitoid stocks within the Carajás greenstone belt (Fig. 1).
overlies the greenstone belt. A Proterozoic granite batholith cross-cuts the upper Rio Fresco pelitic rocks that form the core of the duplex. The southern flank of the Graudas greenstone belt in the Cumaru area comprises a typical metavolcanic-sedimentary sequence (Fig. 2) of the Cumaru Group (Macambira et al. 1986) which has been included in the Andorinhas Supergroup (DOCEGEO 1988). This unit was metamorphosed under greenschist facies conditions and displaced by conjugate sets of N-NE to NW strike-slip shear zones dipping to the W and NW and marked by a strong mylonitic foliation. The main protoliths of this sequence are flows, tuffs and ignimbrites of felsic, intermediate and mafic composition, together with mixed clastic-chemical metasediments and minor ultramafic rocks. Archean granodiorite batholiths such as the Rio Maria Granodiorite (2.88 Ga U-Pb age, Macambira & Lancelot 1991) transect the Andorinhas greenstone belt (Medeiros 1987). Small granodiorite plutons of slightly younger age have also been identified in the Graudas greenstone belt (e.g. Cumaru Granodiorite).

In the Cumaru region, the base of the Graudas Group is represented by intercalations of meta-andesites, meta-basalts and diabases, plus actinolite and chlorite-talc schists. These rocks pass northwards and upwards into meta-dacites/rhyodacites and meta-andesites at the top of the sequence. Centimetric to metric bands exhibiting variable degree of mylonitization are commonly intercalated with volcanic rocks with a shearing foliation. Meta-pelitic rocks and banded iron-formations are often intercalated with felsic volcanic rocks.

Eastwards, the Graudas belt is represented by an undeformed plutonic sequence composed of olivine gabbros and diabases and small ultramafic bodies of cumulus serpentinite, peridotite and dunite. This unit was termed the "Guarapará Intrusive Suite" by Macambira et al. (1986) and interpreted as a possible Archean layered complex.

CUMARU GRANODIORITE: Under the term "Cumaru Granodiorite", Macambira et al. (1986) included three small plutons of 1 to 2 km in diameter that were intruded into the Graudas Group (Fig. 2). The Cumaru stock hosts the main gold mineralization and currently is concealed by the alluvial workings of the Cumaru "garimpo" (no longer active), east of the Serra Ruim shear zone. The stock has an elliptical shape, being elongated in the N-S direction and bordered to the south by the Rio Maria Granodiorite. The other granitoid stocks are covered by the workings of the Maria Bonita "garimpo", west of the Serra Ruim shear zone. The Maria Bonita stocks are compositionally similar to the Cumaru intrusion, but their striking sigmoidal shapes point to syntectonic emplacement of the plutons.

The Cumaru stock is dominated by gray granodiorite but also incorporates small late-formed bodies of a red monzogranite in its northwestern sector. The rocks display an isotropic, mainly idiomorphic, and typical macrocrystalline texture formed by oriented hornblende, zoned oligoclase and plagioclase within a fine-grained and sheared background texture. The rocks are coarse-grained leucogranites with limited recrystallization and forming small, elongated lenses of quartz monzodiorite that are covered by the workings of the Maria Bonita "garimpo", west of the Serra Ruim shear zone. These rocks pass northwards showing cubic negative-crystal shapes formed by leaching of primary pyrite. Butryoidal gold nuggets are also found in high grade ore, yielding bonanza grades of up to 500 ppm.

THE ORE FLOWS: In order to characterize the ore-bearing fluids of the Cumaru gold deposit, a comprehensive fluid inclusion study was undertaken on the mineralized quartz veins. The microthermometry was performed on a Linkam THM600 stage attached to a Leitz Diaplan microscope, with the spectroscopic analyses of the volatile phases on selected inclusions being completed using a Jobin Yvonne S3000 laser Raman microprobe. The majority of the inclusions were of unsuitable sizes (<5μm) for microthermometric study or were destroyed by fracturing and quartz recrystallization process. Most usable inclusions were generally restricted to the cores of undeformed quartz crystals. The characteristic types of fluid inclusions were recognized as part of the Cumaru fluid system.

Type 1 - Aquo-carbonic inclusions (H₂O-CO₂-NaCl) These inclusions are the largest (5-20μm) and by far the dominant ones in the Cumaru quartz veins. They usually occur both along healed cracks and as swarms of randomly distributed inclusions, the latter indicating a possible primary origin (Fig. 6a). At room temperature these inclusions are normally two-phase aqueous fluids containing water and carbon dioxide with local necking-down features. Halite and less-frequent calcite and prismatic crystals of nacrite (NaHCO₃) are the daughter minerals present, but captive carbonates and sulfides (pyrite and chalcopyrite) also occur. The degree of fill (F) in the inclusions is dominated by anhydrous phases of -0.5 and by carbon-bearing phases of -0.5 to 0.9 (Fig. 6b), providing strong evidence of unmixing (heterogeneous trapping) of an aqueous phase and a CO₂-rich phase immiscible at the time of trapping (Rambozetal. 1982).

Type 2 - Carbonic inclusions (H₂O-CO₂-NaCl-Al₂O₃-SiO₂) These inclusions are small (<5μm) and contain high proportions of carbon dioxide and water, with a possible primary origin. They are four-phase inclusions containing water, carbonate, sulfide and aqueous carbonic phases. These inclusions are characterized by the presence of halite and less-frequent calcite and prismatic crystals of nacrite (NaHCO₃) as the daughter minerals present, but captive carbonates and sulfides (pyrite and chalcopyrite) also occur. The degree of fill (F) in the inclusions is dominated by anhydrous phases of -0.5 and by carbon-bearing phases of -0.5 to 0.9 (Fig. 6b), providing strong evidence of unmixing (heterogeneous trapping) of an aqueous phase and a CO₂-rich phase immiscible at the time of trapping (Rambozetal. 1982).
inclusions took place before the homogenization of the CO$_2$ vapor phase, at temperatures within the range -4 to -9.5°C. Salinities of the aqueous phase calculated from the TmClath values, based on the equation of Parry (1986), varied from 19.0 to 20.6 wt% eq. NaCl, a very high value when compared to aquo-carbonic fluids of many mesothermal lode gold deposits.

Most H$_2$O-CO$_2$-NaCl inclusions decrepitated on heating between 250 and 300°C, before total homogenization (Th$_T$) took place. However, the Th$_T$ of the CO$_2$-rich (low F) and CO$_2$-poor (high F) inclusions ranged from 210 to 270°C (in vapor state) and from 220 to 280°C (in liquid state) respectively, pointing to a possible solvus on the Th$_T$-density space.

Type 2 - Carbonic Inclusions (CO$_2$) These inclusions are mostly monophase carbonic inclusions (Fig. 8), although some are CO$_2$-rich inclusions (F<0.1) in which small amounts of H$_2$O could be recognized as a thin film wetting the walls of the inclusion cavities. The carbonic inclusions generally form swarms of randomly distributed or slightly orientated inclusions. They display rounded shapes, ranging from 5 to 15µm in diameter and are usually associated with the much more abundant aquo-carbonic inclusions. As observed with the aquo-carbonic inclusions, the CO$_2$ phase in the carbonic inclusions is pure (Fig. 7a). The homogenization temperatures of the carbonic phase (Th$_{CO2}$) exhibit a smaller range and overlap the lower-half range (9-12°C) of the aquo-carbonic inclusions (Fig. 7b); the values correspond to lower fluid densities of 0.77-0.86g/cm3.

The uniform composition of the carbonic phase and the coexistence of the aquo-carbonic and carbonic inclusions within the same micro-domains in quartz grains support the interpretation that these later inclusions contain a carbonic end-member produced by the CO$_2$-H$_2$O immiscibility that occurred during the evolution of the aquo-carbonic fluid.
Type 3 - Saturated aquo-carbonic inclusions (H$_2$O-CO$_2$-NaCl-Na$_2$CO$_3$) These aquo-carbonic inclusions are H$_2$O-rich brines ($F>0.9$) in which the CO$_2$ phase is difficult to detect. They display irregular and rounded shapes and are 5 to 15µm in size. They occur along healed cracks (pseudosecondary inclusions) inside single quartz grains and are associated with type 1 and type 2 inclusions (Fig. 9). The daughter minerals identified in these brines are halite, nahcolite (NaHCO$_3$) and Na$_2$CO$_3$. The latter is indicated by carbonate melting temperatures (TmCarb) of between 2 and 30°C with a peak around 10°C (Fig. 10a), a feature not recorded in the other aqueous inclusions of the Cumaru deposit. The Na$_2$CO$_3$ daughter mineral was also identified in the type 1 inclusions (Fig. 10a), though less abundant, with TmCarb near the 10°C peak of the type 3 inclusions.

The ice-melting temperatures (Tmlce) of the majority of type 3 inclusions range from -35 to -20°C (with a peak around -24°C), temperatures markedly lower than Tmlce for the majority of type 1 inclusions (Fig. 10b). Conversely, only two values of Tmlce between -13 and -11°C, typical of type 1 inclusions, were recorded from type 3 inclusions. Equally, only a few values of Tmlce around the -24°C peak of the type 3 inclusions were recorded from type 1 inclusions. The TmCarb and Tmlce behavior of type 1 and type 3 inclusions, plus the coexistence of these two types of inclusions in the same micro-domains in quartz grains and the identification of CO$_2$ in type 3 inclusions all demonstrate a close relationship between type 1 and type 3 inclusions. Consequently, type 3 inclusions could be considered the aqueous end-member brine produced by H$_2$O-CO$_2$ immiscibility at the time of the aquo-carbonic fluid trapping.

Type 4 - Saturated aqueous inclusions (H$_2$O-NaCl-KCl-CaCl$_2$) These inclusions are the smallest (<10µm) and least abundant in the quartz veins. They occur along healed cracks and trails inside single quartz grains (pseudosecondary inclusions) and are associated with aquo-carbonic inclusions (Fig. 11). They are aqueous brines ($F>0.9$) within the H$_2$O-NaCl-KCl-CaCl$_2$ system with halite daughter mineral and the total solid phases occupying from 20% to more than 90% of the inclusion volume. The presence of calcium chloride was
indicated by low first-melting temperatures (T_{fm} around -50 to -60°C) and final ice-melting temperatures (T_{mlce}) between -44 and -31°C with a peak around -40 to -36°C (Fig. 12a). Solid phase analyses of these inclusions by scanning electron microscopy confirmed the presence of complex Na-K-Ca chlorides. Halite melting temperatures (T_{mNaCl}) of 230 to 270°C correspond to salinities within the range of 33.6 to 36.0 wt% eq. NaCl. The T_{mlce} and T_{mNaCl} values permit calculation of NaCl/CaCl_2 ratios of between 1 and 1.3, following Vanko et al. (1988) and William-Jones & Samson (1990).

The very different composition of the solid phases and the absence of CO_2 suggest that the type 4 inclusions are remnants of a separate fluid that had mixed with the aquo-carbonic fluid during the evolution of the Cumaru fluid system.

Type 5 - Late aqueous inclusions These inclusions are 1-1 Sum in size and occur along healed cracks and planar arrays which continue across quartz grain boundaries (secondary inclusions). They are both monophase and two-phase inclusions with a degree of fill of around 0.95. The ice-melting temperatures (T_{mlce}) of these inclusions range from -12 to 0°C (Fig. 12b), which indicates a low-salinity later fluid.

FLUID EVOLUTION Based on the physical characteristics and on the microthermometric fluid inclusion data, three kinds of fluids can be defined for the Cumaru gold-bearing quartz veins. The aquo-carbonic fluid (types 1, 2 and 3 inclusions), is the dominant fluid in the Cumaru gold deposit, represented mainly by type 1 H_2O-CO_2-NaCl inclusions. The carbonic inclusions (type 2) and the aquo-carbonic brines (type 3) are regarded as end-members produced by immiscibility processes (Fig. 13). The presence of pure CO_2 and the similar melting
Figure 5 - Photomicrographs of the ore paragenesis. a) Native gold grain associated with bismuthinite and pyrite. Reflected light, N //. b) Native gold grain associated with pyrite and chalcopyrite. Reflected light, N //.

Figure 6 - Degree of fill (F) for H_2O-CO_2-NaCl (type 1) inclusions, a) Photomicrograph showing varying F values, b) Frequency histogram showing F values ranging from 0.2 to 0.95.

H_2O-CO_2-NaCl (type 1) and carbonic (type 2) inclusions

Tm_{CO2} ($\degree C$)
Th_{CO2} ($\degree C$)

Figure 7 - Frequency histogram for aquo-carbonic inclusions, showing: a) CO_2 melting temperatures (Tm_{CO2}). b) CO_2 homogenization temperatures (Th_{CO2}). Vertical scale: right for type 1 inclusions (clear columns) and left for type 2 inclusions (dark columns).
behavior of ice and Na carbonate are common features that support aogenic origin for these inclusions. Despite their high salinity, the H₂O-CO₂-NaCl inclusions are very similar to typical shear-related aquo-carbonic fluids of mesothermal lode gold deposits (Phillips & Groves 1983, Smith et al. 1984, Ho et al. 1985). Accordingly, it seems reasonable to consider the aquo-carbonic fluid of the Cumaru gold deposit as related to the Serra Ruim shear zone.

A second type of fluid is represented by the H₂O-NaCl-KCl-CaCl₂ brine (type 4 inclusions) which displays striking differences in respect to its mode of occurrence, abundance, and P-V-T-X properties when compared to the aquo-carbonic fluid. Furthermore, type 4 inclusions contain aqueous brines devoid of Na carbonate and CO₂, the isochores of which crosscut those of the aquo-carbonic fluids. As these brines occur in granitoid-hosted quartz veins, and porphyry deposits in granitoid cupolas are well-known brine-producing systems (Wilson et al. 1980, Weisbrod 1981, Roedder 1984), it is reasonable to hypothesize that type 4 inclusions are remnants of a fluid derived from the residual magma of the Cumaru granodiorite pluton. The Cumaru Granodiorite is a late-tectonic pluton emplaced in the Serra Ruim shear zone, and introduction of thus the shear-related aquo-carbonic fluids probably preceded and overlapped with influx of the granodiorite-related aqueous brine. Mixing of the two fluids probably took place along the healed cracks as suggested by their close association, thus effectively increasing the salinity of the aquo-carbonic fluid.

The low-salinity late aqueous inclusions represent a third type of fluid, possibly almost pure meteoric water that had circulated along later cracks.

TRANSPORT AND DEPOSITION OF THE GOLD T-P CONDITIONS OF THE ORE DEPOSIT FORMATION The ore fluid studies described above help to place some constraints on the physico-chemical parameters that controlled the solubility and destabilization of the gold complexes (T, P, fO₂, fS₂ and pH) and hence can be used to model gold transport and deposition. However, because of the limited data concerning total homogenization of the aquo-carbonic fluid (ThT), the use of a geothermometer was necessary to further constrain the temperature conditions which prevailed during gold deposition and trapping of the ore-bearing fluids. Microprobe analyses of hydrothermal chlorite in the altered wallrock were utilized following the approach developed by Cathelineau (1988) who established that Al in occupancy of the tetrahedral sites of the chlorite increases linearly with crystallization temperature according to the relationship: T(°C) = 321.98(A1IV) - 61.92. Chlorite analyses of the Cumaru deposit indicated temperatures within the range 300-350°C with a peak at around 340-350°C (Fig. 14a).
The pressure regime for the gold deposition was assessed through isochores calculated from the microthermometric data of the fluids described above by using the equation of state of Brown & Lamb (1989). The isochores A, B and D (Fig. 14b) cover the whole density range of the type 1 inclusions, whereas the isochore C corresponds to carbonic inclusions (type 2) which display the lowest density values and hence the lowest slope of all the isochores. The highest density values and thus the highest isochore slope is presented by the isochore S of the aqueous brines (type 4 inclusions) which cross-cuts the isochores of the aquo-carbonic fluids.

When plotted in T-P space, the lower and upper temperature intervals intersect the isochore lines establishing a pressure range of 1.3-3.8kb (Fig. 14b). The intersection of the aquo-carbonic and aqueous brine isochores could theoretically determine the T-P conditions of these fluids. The ranges of values obtained by this method are 285-400°C and 1.3-3.1kb that broadly overlap the range obtained from the chlorite geothermometer.

Fluid redox state As the solubility of metal species in aqueous hydrothermal solutions is largely affected by oxygen fugacity (fO₂), the redox state of the ore fluid is critical to the transport and deposition of the metals. Considering that the aquo-carbonic fluid is the dominant fluid of the Cumaru gold deposit, evaluation of the C-O-H system is appropriate to address the fO₂ of the ore fluid, by using the following equations:

\[
C + O_2 \leftrightarrow CO_2 \\
\text{where,} \\
K = \frac{fCO_2}{fO_2} \\
\text{Defining the CO₂ fugacity coefficient as} \\
\lambda_{CO_2} = \frac{fCO_2}{XCO_2 \cdot P} \\
\text{Substituting eq. 3 in eq. 2:} \\
fO_2 = \frac{\lambda_{CO_2} \cdot XCO_2 \cdot P}{K} \quad (\text{eq. 4})
\]

where :

XCO₂ is Mol% of CO₂ given by microthermometric data, P is fluid pressure (in bar), λCO₂ is the CO₂ fugacity coefficient obtained from Ryzhenko & Volkov (1971), K is the equilibrium constant given by the equation of Ohmoto & Kerrich (1977):

\[
\log K = \frac{20586}{T} + 0.041 + 0.028 \left(\frac{P-1}{T} \right) \text{ in °K and P in atm.}
\]

The fO₂ of the Cumaru ore fluids, thus calculated by equation 4 for a temperature range of 300-350°C at pressures of 1.3-3.8kb, varies from 10⁻²⁴ to 10⁻⁸ bar. On a log(fO₂)-T diagram (Fig. 15), the fO₂ values of the Cumaru H₂O-CO₂ fluid plot slightly above the quartz-fayalite-magnetite buffer (QFM) and well below the hematite-magnetite buffer (HM), thus demonstrating the relatively reduced nature of the gold-bearing fluid, a feature typical of most ore fluids in Archean greenstone-belt-hosted lode gold deposits. The occurrence of magnetite and hematite in the Cumaru gold deposit indicates that the fluid system subsequently reached a higher fO₂ than that recorded in the aquo-carbonic fluid, probably due to mixing between the H₂O-CO₂ fluid and the H₂O-NaCl-KCl-CaQ₂ brines during the later emplacement of the Cumaru Granodiorite. Such fluid mixing brought about an increase in the fO₂ and a decrease in pH values, moving the Cumaru ore fluids close to the minor group of Archean lode gold deposit that formed at or near the HM buffer (Fig. 15). It was this mixed fluid that was responsible for the introduction of the late interstitial aggregates of pyrite, magnetite and hematite.

Gold-transporting complexes The reduced conditions that dominated the ore-bearing fluids of the Cumaru gold deposit and the paragenetic association of gold with sulfides suggest the sulfur present in the ore fluids was mostly in a reduced state (H₂S or HS⁻). Furthermore, the common occurrence of white mica as the main mineral in the hydrothermal paragenesis and the absence of clay minerals imply a neutral to slightly alkaline nature of the ore fluids (Romberger, 1988).
Figure 14 - Temperature and pressure regime for the Cumaru gold deposit, a) Temperature range obtained from chlorite geothermometry after Cathelineau (1988). b) T-P range (stippled area) within the muscovite + chlorite stability field. The 300-350°C range was calculated from the chlorite geothermometer whereas the 285-400°C range was obtained by intersection of the isochores B and C with S. The isochores A, B and D are from type 1 inclusions, the isochore C is from type 2 inclusions and isochore S represents type 4 inclusions. The numbers on the isochores correspond to density values of the fluids and the degree of fill (F) of the inclusions. Curve 1 (biotite-in) after Nitsch (1970) and domain 2 (illite) after Hoffman & Hower (1979).

Based on these data, the mineralizing fluids of the Cumaru gold deposit can be characterized broadly as CO₂-rich, near-neutral, low-fO₂ aqueous fluid with T = 300-350°C. Experimental gold solubility studies, under these conditions, have demonstrated the importance of thiocomplexes as ligands for gold (Seward 1984,1989). In logfO₂-T space (Fig. 16), the fO₂ range of the main-stage Cumaru ore fluid plots in the stability field of Au(HS)₂⁻ for near-neutral solutions, where high gold solubilities (up to 100 ppb) are attained. The solubility of gold as AuCl₂⁻, however, would be much lower (< 0.1 ppb). Therefore gold transport in the Cumaru deposit was dominantly as Au(HS)₂⁻ or H[Au(HS)]₂⁺, with little or no contribution by AuCl₂⁻ (Seward 1984, 1989).

Mechanism of gold deposition Any change in physico-chemical parameters that reduces stability of Au(HS)₂⁻ or H[Au(HS)]₂⁺ may cause precipitation of gold from an ore fluid. Two gold deposition events have been identified (Fig. 16):

1-Initially gold precipitation was caused by immiscibility between liquid and vapor phases of the shear-related aquo-carbonic fluid that led to loss of reduced sulfur species to the vapor phase. This process brought about oxidation of the residual fluid and consequent gold precipitation. Fluid-rock interaction, including wallrock sulfidation, also cause increase in fO₂ and decrease in fS₂ of the ore fluid thus favoring gold deposition.

2- Later mixing between the aquo-carbonic fluid and aqueous brines caused oxidation of the ore fluid with an increase in fO₂ and decrease in pH which thus favored deposition of gold and development of the pyrite-magnetite-hematite assemblage as interstitial aggregates (Fig. 16).

SOURCES OF THE ORE FLUIDS The nature of the source reservoirs of the mineralizing fluids was addressed through evaluation of the stable isotope signatures of the fluid components (δ¹⁸Owater, δDwater and δ¹³Cco₂), the analyses being carried out at the Scottish Universities Research and Reactor Centre (SURCC) in Glasgow, UK (table 1).

On a δDδ¹⁸O diagram (Fig. 17a), the samples of the Cumaru gold deposit plot inside the metamorphic water field and Archean ore fluid field that overlap the low-OD side of the metamorphic water field. The samples also plot inside or near the boundary of the fields of magmatic water, juvenile water and Santa Rita porphyry fluid that overlap the low-dD side of the metamorphic water field (Fig. 17a).

Such a δD-δ¹⁸O pattern is consistent with mixing of metamorphic and magmatic fluids as deduced from the fluid inclusion data. The affinity of the Cumaru ore fluids with magmatic water and porphyry fluids is obvious, but a potential overlap with metamorphic water are also evident, suggesting that both these types of fluids could have contributed to the genesis of the Cumaru deposit. Furthermore, the plots of the Cumaru deposit display a vertical spread similar to magmatic and juvenile waters. The low values of δ¹⁸Owater (from 4 to 6‰)
Figure 16 - Aqueous solubility of gold as function of temperature and fO₂ in solution containing 6 wt% NaCl (1 molal) and 320 ppm sulfur (0.01 molal), at pH 4 (Fig. 16a) and pH 6 (Fig. 16b). Fine solid lines define bisulfide solubilities and fine dashed lines depict chloride complexes solubilities. The heavy dashed lines delimit the field where bisulfide complexes predominate. Also shown are stability fields of iron oxides and sulfides (heavy solid lines) and the boundary between the aqueous sulfate and sulfide fields (heavy dotted line). Adapted from Romberger (1990). Mechanism 1: immiscibility + sulfidation. Mechanism 2: fluid mixing.

Figure 17 - Stable isotopic data for the mineralized fluids of the Cumaru gold deposit. a) Plot of δ D values versus δ¹⁸ O values (black dots). Also shown are the isotopic compositions of primary metamorphic and magmatic waters, and juvenile water obtained from Taylor (1974), Archean ore fluids (Kerrich, 1989; Golding & Wilson, 1988), Mesozoic Canadian Cordilleran ore fluids (Neshit & Muehlenbachs, 1988) and epithermal ore fluids (Field & Fifarek, 1985). The isotopic composition of the porphyry deposits fluids (dark stippled fields) are from Ohmoto (1986). MWL = meteoric water line, b) δ¹³ C range from fluid inclusion CO₂ in quartz veins of the Cumaru gold deposit. Also shown are the range for Archean gold-bearing fluids (Colvine et al. 1988) and for mantle, magmatic and geothermal fluids obtained respectively from Kyser (1986), Taylor (1986) and Field & Fifarek (1985). Mean values are also illustrated.
could be evidence of surface (meteoric) water infiltration represented by the type 5 inclusions.

The $\delta^{18}O$ composition of CO$_2$ extracted from inclusion fluids varies from -5.02 to -10.20% (mean of $-7.2 \pm 3.6\%$) which is slightly lower than most values for Archean gold-bearing fluids but similar to geothermal CO$_2$ with a likely magmatic deep crustal and/or mantle provenance (Fig. 17b).

GENETIC MODEL AND CONCLUSIONS The data presented in the previous sections demonstrate that the Cumaru gold deposit displays characteristics of both Archean lode deposits and Phanerozoic porphyry deposits. The occurrence of shear-related quartz veins in greenstone belt with evidence of metamorphic-derived aquo-carbonic mineralizing fluids is typical of Archean lode deposits. On the other hand, the Au-Cu-Bi-Mo metal association, and the presence of stockworks containing brine inclusions and hosted by granitoid cupolas correlate with a porphyry model. In order to explain such a hybrid character for the studied deposit it is proposed that both the shear zone and the granodiorite intrusion contributed significantly to the genesis of the Cumaru gold deposit. Interaction between tectonic and magmatic processes during generation of ore deposits was proposed by Mason (1992) who suggested the existence of a complete series between lode type (structural control only) and porphyry type (magmatic control only).

According to the proposed model, the Cumaru gold deposit would be an intermediary member in this type of continuum, exhibiting both structural and magmatic controls (Fig. 18a). Metamorphic-derived aquo-carbonic fluids were produced when the Serra Ruim shear zone affected the southern flank of the Grauvas greenstone belt sequence. The shear zone was the main conduit for circulation of the aquo-carbonic fluid which probably scavenged gold from the deeper greenstone belt volcanic rocks, precipitating the metal in quartz veins together with a reduced mineral assemblage (sulfides + gold). Intrusion of the granodiorite led to superimposition of a magma-generated brine which mixed with the metamorphic-sourced aquo-carbonic fluid, leading to destabilization of the auriferous complexes and hence triggering gold deposition in a more oxidized assemblage (sulfides + oxides + gold). Such a hybrid model is referred to here as a "lode-porphyry" model (Fig. 15b). Intermediary deposits between lode and porphyry types have already been recognized in Phanerozoic mesothermal gold deposits (Murray 1986, Sang & Ho 1987, Morrison 1988), but Cumaru appears to be the first case recorded in Archean terrains.

Porphyry-style gold mineralization, though more typical in Mesozoic-Cenozoic deposits, is consistent with the petrological characteristics and tectonic environment of the Cumaru Granodiorite which is defined as an I-type calc-alkaline pluton of volcanic arc affiliation, similar to Phanerozoic porphyry systems (Wilson & Kyser 1988; Sillitoe 1989, 1991). Although Archean tectonic regimes are still extensively debated, plate tectonic models have been applied recently to the Archean by a number of authors (e.g. Cassidy et al. 1989, Sutcliffe et al. 1993), and Archean porphyry deposits have been identified by other workers (e.g. Barley 1982, Fraser 1993).

The petrogenetic model proposed here for the Cumaru deposit is a new type of gold deposit for the Amazon Craton and it provides a new insight concerning the role of granitoids in mesothermal lode gold genesis in the region. The granitoids appear to have played a very active role in the genesis of these deposits, suggesting a magmatic control that could have been at least as important as the structural control. Deposits of the Cumaru type may occur not only in the Carajás Province but in many other Archean greenstone belt terrains in Brazil. Particularly favourable targets for exploration are the contacts between the greenstone belts and the granite-gneiss terrains, where lithological discontinuities were sites of enhanced shearing and granitoid intrusive activities.

Acknowledgements This research was sponsored by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) grant and CNPq PhD scholarship to M. D. Santos. Field work support and drill hole samples were supplied by Mineração Graduais. The geochemical and fluid inclusions studies were carried out at the Universidade de Brasília, Brazil, and the University of Southampton, UK, under the supervision of Prof. Geraldo B. Santos (Brazil) and Drs. Ian Croudace and Stephen Roberts (UK) respectively. The isotope analyses were performed at the Scottish Universities Research and Reactor Centre, Glasgow, UK. To all these people and institutions the authors are very grateful.