GEOCRONOLOGIA U-Pb (SHRIMP) E Sm-Nd DE XISTOS VERDES BASÁLTICOS DO ORÓGENO ARAÇUÁI: IMPLICAÇÕES PARA A IDADE DO GRUPO MACAÚBAS

MARLY BABINSKI1, RAFAEL JAUDE GRADIM2, ANTÔNIO CARLOS PEDROSA-SOARES3, FERNANDO FLECHA DE ALKMIM2, CARLOS MAURÍCIO NOCE3 & DUNY LIU4

Resumo No vale do Rio Preto, setor ocidental do Orógeno Araçuai (ca. 60 km a NE de Diamantina), ocorrem xistos verdes de filiação basáltica, cuja idade e posição estratigráfica foram motivo de controvérsia, pois os autores dividiram-se naqueles que acreditam serem do Grupo Macaúbas (Neoprotérozico) e naqueles que os correlacionaram ao Supergrupo Espinhaço Inferior (ca. 1.7 Ga). Entretanto, estudos detalhados demonstram que os xistos verdes representam derrames basálticos submarinos, sedimentação vulcanoclastica e vulcanismo relacionado a fontes de alta produtividade, relacionados a deposição da Formação Chapada Acuáii do Grupo Macaúbas (Gradim et al., 2005). Os dados geoquímicos indicam que os protólitos dos xistos verdes evoluíram em ambiente continental intraplaque. Análises isotópicas U-Pb (SHRIMP) foram realizadas em doze cristais de zircão extruídos de uma amostra de xisto verde, cujo pó de rocha-total foi utilizado para análise Sm-Nd. A idade-modelo Sm-Nd (ca. 1.52 Ga) sugere que os protólitos dos xistos verdes são mais novos que o magmatismo do rifte Espinhaço. A maioria dos cristais de zircão analisados mostrou-se como grãos detriticos. As idades mais antigas indicam grãos herdados do embasamento arqueano-paleoprotérozico e de rochas magmáticas do rifte Espinhaço. Os cristais mais jovens limitam a idade máxima dos protólitos dos xistos verdes em ca. 1,16 Ga.

Palavras-chave: vulcanismo básico, Grupo Macaúbas, Orógeno Araçuai, Neoprotérozico

Abstract U-Pb (SHRIMP) AND Sm-Nd GEOCRNNOLOGY OF BASALTIC GREEN SCHISTS OF THE ARACUAI OROGEN: IMPLICATIONS FOR THE AGE OF THE MACAÚBAS GROUP The age and stratigraphic position of the basaltic green schists of the Rio Preto valley, located in the western part of the Araçuai Belt (ca. 60 km north of Diamantina, Minas Gerais) were a matter of controversy in the geologic literature, because several authors correlated them to the Neoprotérozico Macaúbas Group but others to the lower Espinhaço Supergroup (ca. 1.7 Ga). However, detailed studies demonstrate that these green schists represent an interplay of submarine basaltic volcanism, volcanoclastic sedimentation and fire fountaining, and that they belong to the Chapada Acuáii Formation of the Macaúbas Group (Gradim et al., 2005). Geochemical studies indicate that the green schist protoliths evolved in a continental intraplate environment. Zircon crystals were separated from a green schist sample and analyzed by the U-Pb SHRIMP method. A Sm-Nd whole-rock isotopic analysis was obtained from the same sample. The Sm-Nd model age of ca. 1.52 Ga suggests that the green schist protoliths are younger than the magmatism of the Espinhaço rift. Most analyzed zircon crystals show features of detrital grains. The older ages indicate zircon grains inherited from the Archean-Paleoprotérozico basement and from magmatic rocks of the Espinhaço rift. The younger U-Pb values constrain the maximum age of the green schist protoliths at ca. 1.16 Ga.

Keywords: basic volcanism, Macaúbas Group, Araçuai Orogen, Neoprotérozico

INTRODUÇÃO Os xistos verdes do vale do Rio Preto, situado cerca de 60 km a nordeste de Diamantina, no setor centro-ocidental do Orógeno Araçuai (Fig. 1), tiveram sua posição estratigráfica, derivação petrogenética, ambiente vulcanético e significado tectônico abordados detalhadamente por Gradim (2005).

Este trabalho apresenta resultados de estudos isotópicos realizados pelos métodos U-Pb (SHRIMP) e Sm-Nd, que indicam a idade máxima dos xistos verdes e corroboram sua origem durante a fase rifte da Bacia Macaúbas, confirmando as interpretações decorrentes do mapeamento geológico e estudos geofísicos realizados por Gradim (2005).

CONTEXTO REGIONAL No setor do Orógeno Araçuai onde estão expostos os xistos verdes aqui abordados (Fig. 1), as unidades geológicas são o embasamento de idade arqueano-paleoprotérozica, o Supergrupo Espinhaço e o Grupo Macaúbas (Grossi-Sad et al. 1997, Noce et al. 1997, COMIG-CPRM 2003).

O Supergrupo Espinhaço é uma espessa sequência de rochas
clásicas dominada por quartzoitos, com contribuições subordinadas de rochas vulcânicas e carbonatos, metamorfitas na fácies xisto verde. Este supergrupo registra a evolução de uma bacia ensiática (rift-sinéclise), nucleada por volta de 1,75 Ga (e.g., Babinski et al. 1994, Dussin & Dussin 1995, Uhlein et al.1998, Martins-Neto et al. 2001).

- os xistos verdes do vale do Rio Preto estão intercalados em pilha de metadiamicítitos, metapelitos e quartzoitos pertencentes à Formação Chapada Acaú (Grupo Macaúbas) (Noce et al. 1997, COMIG-CPRM 2003);
- o acervo estrutural impresso nas rochas metassedimentares e também observado nos xistos verdes e registra a deformação brasiliana que afetou a região.
- os xistos verdes são agrupados em epidoto-tremolita-clorita

LEGENDA
- **NQd**: Coberturas detriticas eventualmente lateritizadas
- **NPb**: Grupo Bambuí indéviso
- **NPcepFm. Capelinha**
- **NPmq** Quartzoitos do G. Macaúbas
- **NPfr** Fm. Ribeirão da Folha: 820 Ma
- **NPca** Fm. Chapada Acauí
- **NPmx** Membro Metabásico Rio Preto
- **NPsc** Fm. Serra do Catuni
- **NDb** Fm. Duas Barras
- **NPv** Suite Metabásica Pedro Lessa
- **PMe** Sg. Espinhaço indéviso
- **PPb** Suite Borachudos 1770-1670 Ma
- **Emb** Embasamento > 1,8 Ga
- **Falhas de empurrão**

GEOCRONOLOGIA U-Pb (SHRIMP) E Sm-Nd Para a amostragem destinada aos estudos isotópicos foi selecionado um afloramento da litofacies xistos verdes com estruturas em almofoadas e disjunções poliedrais, em zona de baixa intensidade de deformação. Este afloramento situa-se à margem do Rio Preto, cerca de 1,6 km ao sul da saída de São Gonçalo do Rio Preto pela estrada que leva ao Parque Municipal do Rio Preto (ponto 14, UTM 671211W e 80069478; mapa de pontos de Gradim 2005).

Os concentados de zircão foram obtidos no LOPAG-DEGEO-UFOP, por métodos convencionais. As análises isotópicas U-Pb foram realizadas em cristais de zircão pelo método SHRIMP (Sensitive High Resolution Ion Microprobe) no Beijing SHRIMP Laboratory, China. Procedimentos analíticos estão descritos em Compston et al. (1992). As idades foram calculadas através do software ISOPLOT (Ludwig, 2001). A análise isotópica de rocha total pelo método Sm-Nd foi realizada no Centro de Pesquisas Geocronológicas da USP, de acordo com o procedimento analítico.
apresentado por Sato et al. (1995).

Doze grãos de zircão com morfologias diversas foram selecionados para análise por SHRIMP (Fig. 2). Alguns cristais mostram-se incipientemente arredondados, evidenciando seu caráter detritico. As idades obtidas variaram entre ca. 1,16 Ga e 2,67 Ga (Tabela 1). A grande maioria das datações individuais é muito pouco discordante (Tabela 1, Fig. 3). Em função das correções de Pb comum nas razões isotópicas obtidas durante as análises dos minerais datados, as idades 206Pb/238U melhor representariam a época de cristalização de grãos mais jovens que 1,5 Ga, enquanto para os cristais mais antigos as idades 207Pb/206Pb são mais apropriadas (marcadas em negrito na Tabela 1).

Dos doze spots analisados (um em cada cristal de zircão), onze apresentam discordância absoluta menor ou igual a 5%, mas oito apresentam discordância inversa, porém pequena (módulo menor ou igual a 3). Apenas a idade obtida no spot 3 apresenta discordância acima desta faixa (34%) e não será considerada nas interpretações. As idades mais jovens do conjunto, obtidas nos spots 1 e 5, apresentam discordância negativa de 2 e 3%, respectivamente.

Os cristais de zircão analisados são todos de origem magmática, conforme indicado por suas razões 232Th/238U relativamente altas (Tabela 1). Imagens de catadoluminescência corroboram esta evidência geoquímica, mostrando zonaamento oscilatório tipicamente magnético, presente em núcleos e/ou sobrecrecimentos magmáticos em muitos cristais (Fig. 2). Nenhum dos cristais analisados apresenta sobrecrecimento metamórfico. Isso seria de se esperar em decorrência de que o metamorfismo causado pela Orogenia Brasiliana nas rochas do Grupo Macaúbas e do Supergrupo Espinhaço é de fácies xisto verde, na região abordada.

Os grãos de zircão analisados foram separados por idade ou intervalos de idade, a fim de facilitar a identificação de possíveis relações entre idade e morfologia (Fig. 2). As idades obtidas nos spots foram agrupadas também com vistas a correlações com eventos geológicos conhecidos. Enfatiza-se que, como os grãos de zircão são originalmente magnéticos e livres de bordas metamórficas, esses intervalos de idades apontam somente episódios magmáticos (i.e., nenhum deles sugere evento metamórfico).

O conjunto de idades mais jovem (ca. 1,16 Ga) é o mais importante no contexto desta investigação, pois define a idade máxima do protólio do xisto verde datado. Neste grupo, o cristal de zircão do spot 1 apresenta zonaamento oscilatório tipicamente magnético e idade de ca. 1,16 Ga. O cristal do spot 5, com idade similar, apresenta zonaamento localizado, mas sua razão 232Th/238U (= 0,42) é muito próxima do valor dado pelo spot 1 (= 0,46) e também indica origem magmática.

O conjunto do intervalo 1,6-1,7 Ga pode ser relacionado ao magmatismo felsico da abertura do rift Espinhaço. A idade do spot 12 (ca. 1,72 Ga) é próxima da idade do meta-ríolito de Planalto de Minas (Machado et al. 1989) e está dentro da gama de idades (1,77-1,67 Ga) da Suipe Borrochados (Silva et al. 2002, Noce et al. 2003).

O conjunto de 1,9-2,1 Ga pode ser relacionado à Orogenia Transamazônica que produziu grande volume de rochas magmáticas bem representadas no embasamento do Orógeo Araçuaí.

Os outros valores de idades não apresentam correlações tão diretas. A idade arqueana do spot 10 é mais jovem que as idades de
cristalização obtidas nos complexos Gouveia e Guanhães, o primeiro com datação em ca. 2,84 Ga (Machado et al. 1989) e o segundo com idades de ca. 2,87 e 2,71 Ga (Silva et al. 2002, Noce et al. 2003). O conjunto 1,4-1,5 Ga não encontra uma concentração equivalente bem estabelecida na literatura, mas valores similares foram obtidos para a cristalização magnética do protótipo de anfibolito associado ao Complexo Pocrane (Silva et al. 2002), do embasamento do arco magmático do Orógeno Araçául, e em um sill associado aos areitos da Formação Mangabeira da Chapada Diamantina, Bahia (Babinski et al., 1999).

Os cristais de zircão analisados são considerados como xenocristas provenientes de rochas magnéticas de idades variadas. Essa interpretação é sugerida pelo fato de que os sedimentos associados à atividade vulcânica que originou o protótipo dos xistos verdes. Essa contribuição sedimentar estaria representada nos depósitos tufosos e material inter-almoafados. Adicionalmente, os cristais de zircão poderiam ter sido assimilados de rochas encaixantes, durante a ascensão do magma assimilado que originou o vulcanismo subaquático.

Os dados Sm-Nd da análise de rocha total da amostra estudada são: Sm = 1,119 ppm; Nd = 4,751 ppm; 144Sm/144Nd = 0,1424; 143Nd/144Nd = 0,5123. Esses dados fornecem uma idade-modelo (TDM) de ca. 1,52 Ga e εNd = -6. Considerando o valor de 900 Ma como idade máxima da sedimentação glaciológica (Buchwald et al. 1999, Pedrosa-Soares et al. 2000), o parâmetro εNd/144Nd resulta no valor de 40,23. Entretanto, como a amostra analisada contém grãos de zircão detritico, é muito provável que outros minerais tenham sido incorporados à lava original. Ademais, partes dos xenocristas de zircão e outras contaminações podem ter sido contribuições do material detritico inter-almoafado que não se conseguiu eliminar totalmente da amostra. Desta forma, a idade-modelo Sm-Nd apenas sugere uma idade máxima para a cristalização dos protótipos magnéticos e o valor do parâmetro εNd precisa ser avaliado com cautela.

CONCLUSÃO - A idade U-Pb de ca. 1,16 Ga, obtida em cristais de zircão, limita a idade máxima do protótipo igneo do xisto verde datado. A idade-modelo Sm-Nd (TDM) em ca. 1,52 Ga corrobora a afirmativa acima. Desta forma, a unidade de xistos verdes do vale do Rio Preto é definitivamente mais nova que o magmatismo do rife Espinhaço (1,77-1,67 Ga). De fato, as relações estabelecidas no campo, os dados geocronológicos e as evidências geocronológicas embasam a inserção dos xistos verdes no Membro Rio Preto da Formação Chapada Acauí, Grupo Macaúbas (Gradim 2005, Gradim et al. 2005).

Os cristais de zircão com idade de ca. 1,16 Ga podem ser provenientes de rochas geradas nos estágios iniciais do rifting continental Macaúbas, por exemplo, de rochas felsíticas que foram erodidas ao serem alçadas nas ondas de rife ou em horst internos (Gradim et al. 2005). Vale lembrar que grãos de zircão detritico extraídos de quartzo da Formação Chapada Acauí apresentam idades em torno de 1,0-0,9 Ga (Pedrosa-Soares et al. 2000), assim como granitos e vulcanitos anorogênicos da contraparte da Bacia Macaúbas que se situa na Faixa Congo Ocidental (Tack et al. 2001).

Agradecimentos - Agradecemos ao CNPq e à FAPEMIG pelo financiamento do projeto de pesquisa e bolsas de produtividade em pesquisa de M. Babinski, A.C. Pedrosa-Soares, F.F. Alkmim e C.M. Noce, à CAPES pela bolsa de mestrado concedida a R.J. Gradim e aos revisores da RBG pelas sugestões ao manuscrito.

Referências

Buchwald R., Toulkeridis T., Babinski M., Santos R., Noce C.M., Martins-Neto, M.A., Herscovici C.M. 1999. Age determination and age related provenance analysis of the Proterozoic glaciation event in

Tabela 1 - Dados analíticos obtidos nos cristais de zircão do xisto verde basáltico da Formação Chapada Acauí.

<table>
<thead>
<tr>
<th>Spot</th>
<th>% 206Pb/238U</th>
<th>ppm U</th>
<th>ppm Th</th>
<th>206Pb/238U</th>
<th>ppm U</th>
<th>ppm Th</th>
<th>Idade 206Pb/238U</th>
<th>% Disc.</th>
<th>206Pb/238U</th>
<th>ppm 206Pb/235U</th>
<th>ppm 206Pb/238U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>1,70</td>
<td>74</td>
<td>47</td>
<td>0,39</td>
<td>23,2</td>
<td>1158+21</td>
<td>1137 + 83</td>
<td>-2</td>
<td>2,106</td>
<td>4,6</td>
<td>0,1968</td>
</tr>
<tr>
<td>2.1</td>
<td>1,81</td>
<td>73</td>
<td>28</td>
<td>0,39</td>
<td>23,2</td>
<td>1158+21</td>
<td>1137 + 83</td>
<td>-2</td>
<td>2,106</td>
<td>4,6</td>
<td>0,1968</td>
</tr>
<tr>
<td>3.1</td>
<td>2,84</td>
<td>443</td>
<td>427</td>
<td>0,39</td>
<td>23,2</td>
<td>1483+27</td>
<td>1507 + 53</td>
<td>2</td>
<td>3,250</td>
<td>3,4</td>
<td>0,2586</td>
</tr>
<tr>
<td>4.1</td>
<td>0,97</td>
<td>103</td>
<td>56</td>
<td>0,39</td>
<td>23,2</td>
<td>1158+29</td>
<td>1124 + 200</td>
<td>-3</td>
<td>2,090</td>
<td>10</td>
<td>0,1967</td>
</tr>
<tr>
<td>5.1</td>
<td>2,84</td>
<td>37</td>
<td>15</td>
<td>0,42</td>
<td>6,36</td>
<td>1158+29</td>
<td>1124 + 200</td>
<td>-3</td>
<td>2,090</td>
<td>10</td>
<td>0,1967</td>
</tr>
<tr>
<td>6.1</td>
<td>0,93</td>
<td>262</td>
<td>222</td>
<td>0,87</td>
<td>57,5</td>
<td>1453+25</td>
<td>1382 + 43</td>
<td>-5</td>
<td>3,068</td>
<td>2,9</td>
<td>0,2529</td>
</tr>
<tr>
<td>7.1</td>
<td>0,49</td>
<td>193</td>
<td>100</td>
<td>0,53</td>
<td>50,2</td>
<td>1453+25</td>
<td>1382 + 43</td>
<td>-5</td>
<td>3,068</td>
<td>2,9</td>
<td>0,2529</td>
</tr>
<tr>
<td>8.1</td>
<td>0,97</td>
<td>86</td>
<td>113</td>
<td>1,36</td>
<td>25,7</td>
<td>1908+35</td>
<td>1860 + 45</td>
<td>3</td>
<td>5,400</td>
<td>3,1</td>
<td>0,3444</td>
</tr>
<tr>
<td>9.1</td>
<td>2,42</td>
<td>225</td>
<td>254</td>
<td>1,17</td>
<td>76,7</td>
<td>2115+34</td>
<td>2064 + 45</td>
<td>2</td>
<td>6,830</td>
<td>3,2</td>
<td>0,3883</td>
</tr>
<tr>
<td>10.1</td>
<td>0,97</td>
<td>126</td>
<td>52</td>
<td>0,43</td>
<td>54,3</td>
<td>2608+54</td>
<td>2665 + 22</td>
<td>2</td>
<td>12,46</td>
<td>2,9</td>
<td>0,499</td>
</tr>
<tr>
<td>11.1</td>
<td>1,03</td>
<td>220</td>
<td>103</td>
<td>0,49</td>
<td>68,2</td>
<td>1967+122</td>
<td>1914 + 27</td>
<td>3</td>
<td>7,560</td>
<td>2,6</td>
<td>0,3568</td>
</tr>
<tr>
<td>12.1</td>
<td>0,82</td>
<td>157</td>
<td>92</td>
<td>0,60</td>
<td>42,2</td>
<td>1741±30</td>
<td>1723±37</td>
<td>-1</td>
<td>4,510</td>
<td>2,8</td>
<td>0,3101</td>
</tr>
</tbody>
</table>

Erros são 1 sigma. Pb e Pb* representam chumbo comum e radiogênico, respectivamente. Idades em negrito representam a idade de cristalização do mineral. % Disc. = percentual de discordância.

COMIG-CPRM 2003. Mapa Geológico do Estado de Minas Gerais, escala 1:1.000.000. CODEMIG, Belo Horizonte, CD-ROM.

Manuscrito A-1602
Recebido em 02 de junho de 2005
Revisão dos autores em 15 de novembro de 2005
Revisão aceita em 20 de dezembro de 2005