THE SETTLING PATTERN OF BRACHIOPOD SHELLS: STRATIGRAPHIC AND TAPHONOMIC IMPLICATIONS TO SHELL BED FORMATION AND PALEOEKOLOGY

MARCELLO G. SIMÕES, SABRINA COELHO RODRIGUES, JULIANA DE MORAES LEME, MARCOS CESAR BISSARO JÚNIOR

Resumo Velocidade e padrão de decantação de conchas de Boucharadia rosea (Mawe) (Brachiopoda, Rhynochelliformes), da costa norte do Estado de São Paulo, foram experimentalmente estudadas, para entendimento do seu comportamento hidrodinâmico e potencial para seleção por processos hidráulicos. B. rosea é um pequeno braquiopode (epifauna livre), cuja estrutura da concha é similar à de muitos braquiopodes paleozícos. Coquinas com conchas desse gênero são também comuns no Terziário (Mioceno) marinho da América do Sul. Vinte valvas (10 dorsais e 10 ventrais) e três conchas articuladas, compreendendo a variação de tamanho de B. rosea, foram selecionadas para os experimentos. As conchas foram secas e pesadas com acurácia de 0.01g, e as dimensões dos principais eixos de cada concha foram obtidas com paquímetro digital. As velocidades de decantação das conchas foram obtidas em um tanque de 35cm de largura e 56cm de profundidade, contendo água salgada, natural. O tempo de decantação foi estimado com acurácia de 0.1 segundos, para o cálculo das velocidades de decantação. Para cada concha, 10 lançamentos foram realizados (230 no total). A média da velocidade de decantação, para as ventrais é de 15.35 cm/s e 16.65 cm/s, para as dorsais. Conchas articuladas têm velocidade de decantação média de 26.8 cm/s, permanecendo por tempo mais prolongado na coluna d’água. Assim, essas são mais susceptíveis ao transporte. As dorsais, com seu formato mais convexo e velocidade de decantação mais rápida, estão menos sujeitas ao transporte, podendo formar depósitos residuais. Esse fato pode ser explicado, em parte, porque as ventrais têm maior área, em seção, do que as dorsais de mesmo peso. Assim sendo, fragmentação diferencial das valvas não é o único processo responsável pela proporção desigual de valvas dorsais/ventrais em depósitos praiais do Recent e em muitas assembleias fósseis. Finalmente, conchas desarticuladas, de qualquer tamanho e convexidade, decantam sempre com a concavidade para cima. Assim, rochas com biotramas caracterizadas por predominio de conchas com a concavidade para cima serão comuns quando geradas por fluxos turbulentos, onde as partículas são colocadas em suspensão e, posteriormente, descantadas.

Palavras-chave: Tafonomia Experimental, Bioestratigrafia, Brachiopoda, Padrão de Decantação, Boucharadia rosea

Abstract In order to understand the effects of shell morphology on the hydrodynamic behavior and potential for sorting by hydraulic processes, the settling velocities and falling patterns of Boucharadia rosea (Mawe) shells (Brachiopoda, Rhynochelliformes) from the northern coast of São Paulo State, Brazil, were studied under laboratory and field conditions. B. rosea is a small, epifaunal, free-living brachiopod with shells fabric similar to some forms of Paleozoic brachiopods. Boucharadid-rich shell-beds are also common in many Tertiary (Miocene) rocks of South America. Twenty valves (10 dorsal and 10 ventral) and three closed articulated shells, encompassing the typical size range of B. rosea were selected to the experiment. Shells were dried and weighed in air to the nearest 0.01g. The diameters of the three major axes of shells were measured to the nearest 1mm. Hydraulic settling velocities were recorded by releasing shells in a 35 cm wide and 56 cm deep column filled with natural salt water. Settling times were measured to the nearest 0.01 second, but falling durations were rounded to the nearest 0.1 second for calculation of settling velocities. Each shell was released just beneath the water surface for ten consecutive runs (230 releases total). The average settling velocities is 15.35 cm/s for ventral valves and 16.65 cm/s for dorsal ones. Articulated shells have average settling velocities of 26.8 cm/s. The lower average settling velocities of ventral shells indicate that they can be transported to greater distances than the less convex dorsal valves. This may be explained, in part, by the fact that ventral valves have greater cross-sectional areas than dorsal ones of the same weight. Hence, differential fragmentation of valves is not the only process likely to produce such bias, observed in some modern beach deposits, and many fossil concentrations. Finally, disarticulated shells settle in a concave-up orientation, regardless the size or degree of concavity of shells. Hence, bioturbated shell beds in a preferred concave-up orientation will be common in fossil concentrations generated by turbulent flows with suspension settling of particles.

Keywords: Experimental Taphonomy, Biostratigraphy, Brachiopoda, Settling Pattern, Boucharadia rosea

INTRODUCTION Brachiopod shells, as well as their shell-rich concentrations are noteworthy features of the Phanerozoic sedimentary record (see Brett & Baird 1997, Brett et al. 1997, Tomášových 2004, for some Paleozoic and Mesozoic examples) and, in many cases, the only source of paleobiological information. The genesis and environmental distribution of these biogenic concentrations is controlled by complex taphonomic (e.g., susceptibility to transport and differential destruction) and environmental factors (e.g., sea level) (Spier & Brett 1988, 1991, Brett 1995, Brett & Baird 1997, Brett et al. 1997, McFarland et al. 1999, Tomášových, 2004, Holz & Simões, 2005). In this context, it is crucial to understand the taphonomic processes, and the potential biases introduced by the biostratigraphic and/or diagenetic agents involved. Since the manner that these agents operate, and the taphonomic signatures left in the fossil concentrations is not always predictable, only through experimental studies (Lever et al. 1961, Savarese 1994, Messina & LaBarbera 2004, and Torello 2004) can the nature, the characteristics and the environmental significance of those bioelastic concentrations be better understood.

Some laboratory and field experiments of which taphonomic tumbling and flume experiments are the commonest may help
geologists and taphonomists to simulate the biostratigraphic and diagenetic processes (e.g., transport, abrasion, dissolution, see Lever et al. 1961, Savarese 1994, Flessa & Brown 1983, Smith et al. 1992, Messina & LaBarbera 2004, Toelino 2004, and references therein) affecting the invertebrate skeletal remains at the sediment/water interface. Under shallow water brachiopod shells are susceptible to differential rates of transport, fragmentation/abrasion and sorting so, it is important to examine the hydrodynamic properties of these shells falling through a column of salt water (see McKeech 1987, similar approach with mollusk shells). The goal of the present study is to determine the settling velocities and depositional patterns of shells of the terebratulid brachiopod Bouchardia rosea (Mawe) (Fig. 1), discussing the taphonomic, paleoecologic and sedimentologic implications of the gathered data.

Conceptual framework. Moving water is one of the most important agents affecting the transport (Boyjian & Thayer 1995 and Flessa 1998) and sort of unattached shells or those otherwise incapable of independent movement. B. rosea lives in the photic zone (Tommasi 1970, Kowalewski et al. 2002, Simões et al. 2004), and differently from many burrowing bivalve mollusks (Stanley 1970), just in the sediment/water interface. This means that shells of this brachiopod are prone to be at the sediment/water interface, and sorted and/or transported by waves and flows, behaving as sedimentary particles. Thus, the taphonomic, paleoecologic and sedimentologic studies of these remains should be viewed from that sedimentologic perspective.

A series of studies focusing on the terminal settling velocities of bivalve shells, the sorting of valves along beaches, and flume experiments are available to clams (Martin-Kaye 1951, Menard & Boucot 1951, Lever 1958, Lever et al. 1961, Kornicker et al. 1963, Bering 1965, Lever & Thijssen 1968, Maiklem 1968, Behrens & Watson 1969, Braithwaite 1973, Futterer 1978, Mehta et al. 1980, Allen 1984a, b, McKeech 1987). However, only few flume and taphonomic tumbling experiments are available for brachiopod shells (Menard & Boucot 1951, Nagle 1967, LaBarbera 1977, Alexander 1984, 1986, Savarese 1994, Rodriguez & Alexander 1996, Messina & LaBarbera 2004, Torelló 2004, and references therein). In spite of their importance as sedimentary particles in many Phanerozoic marine sequences and modern environments (Hallman et al. 1996, Simões & Kowalewski 2003, Kowalewski & LaBarbera 2004), studies on brachiopod shells sorting and settling pattern are lacking. The present paper is a contribution to the biostratigraphy of brachiopod shells, emphasizing the biased proportion of dorsal (brachial) to ventral (pedicle) valves observed on some sedimentary environments, such as sandy beach deposits of the northern coast of São Paulo State, Brazil (Simões & Kowalewski 2003), as well as in some fossil concentrations (Brett & Baird 1986).

EXPERIMENTAL MATERIAL AND METHODS. Our experiment is methodologically similar to that published by McKeech (1987) who studied mollusk shells (bivalves and gastropods). We measured the shell size, weight, and axial dimensions of unpaired (dorsal/ventral) and closed articulated shells of B. rosea and contrasted them with the settling velocities of each condition (articulated and disarticulated shells) in order to understand the effects of shell morphology, size, weight and area on the hydrodynamic properties and potential for sorting by hydraulic processes.

Brachiopod species selection. B. rosea, the living representative of bouchardiids (a Cenozoic group of austral terebratulid brachiopods), is a small, 1.5cm, pink-colored, biconvex, smooth, punctate brachiopod. In the last few years the marine taphonomic research (Kowalewski & LaBarbera 2004, p. 423) in Brazil has been centered on shells of B. rosea. This is because their shell microstructure, including a thin primary shell layer, a thick secondary shell layer with a fibrous fabric, and no tertiary shell layer is similar to that of many groups of Paleozoic brachiopods (Carroll et al. 2003). In addition, autoecological analysis (Richardson 1981a, b), anatomical studies (Brunton 1996) and the direct observation of the pedicle of individuals kept in marine aquariums or captured alive indicate that B. rosea is a free-living brachiopod, at least during the adult stage (Simões et al. 2004). This mode of life was common among adult forms of many Paleozoic brachiopods (Rodewick 1970). Even more important, shells of B. rosea are found in beach sediments, providing a good example of out-of-habitat, landward transportation of brachiopod shells as sedimentary particles (Simões & Kowalewski 2003). Finally, Bouchardia-dominated shell-beds are common in the Tertiary of South America.

Figure 1. Ventral (A-B) and dorsal (C-D) valves of Bouchardia rosea Mawe. The three main axes of shells are indicated by black arrows. Note the distinct dimension of (c) axis in the ventral valve (B). The thickened hinge of dorsal valve is clear in figure D. Explanation in the text. Scale bar, 2mm.
(Camacho Formation, Miocene). These were generated through hydraulic processes (Martínez 1994). Our experimental results may aid and guide future interpretations of the data entombed in fossil concentrations where smooth, biconvex brachiopod shells are common.

Sampling Shells of *B. rosea* employed in our experiments were collected in shallow water environments (from 5 to 35 meters of depth) of the Ubatuba bay (23° 26’ S and 45° 02’ W) in the northern coast of São Paulo State, Brazil. This area was chosen for its persistent occurrence of brachiopod-rich accumulations along an onshore/offshore gradient (Carroll et al. 2003, Rodland et al. 2004, Simões et al. 2004). Bottom sediments contain abundant skeletal material, including various mollusk (mainly bivalves) and brachiopod shells. For this study we collected at least 8 liters (see Best & Kidwell 2000a, b) of bottom sediments in 14 sampling stations using a Van Veen grab sampler (1/40 m²). These sediments (mainly fine to coarse grained siliciclasts, Mahiques et al. 1998) yielded over 4000 shells of *B. rosea*.

Additionally, several beaches of varied granulometry (Souza 1997) and rocky regions (Palacio 1982) are found in the vicinities of the Ubatuba bay. Extensive sampling efforts along these beaches have revealed the rare occurrence of brachiopod shells in the Itambabuca beach (23° 58’ 54” S/45° 29’ 02” W), 12 kilometers northward from Ubatuba bay (Simões & Kowalewski 2003). Itamambuca beach is mainly characterized by coarse (33.3%) to medium (55.6%) sands, as well as by fine sands (11.1%). Sediments are well (22.2%) to moderately (77.8%) sorted (Souza 1997). Shells on the beach were collected from five squares of 1m² at the foreshore, during low tides. Over 5000 brachiopod shells were collected, being available for a variety of experimental studies.

Apparatus and procedures Prior to the settling experiment, ungraded shells of *B. rosea* were cleaned under tap water and their surface checked under 10x magnification for the presence of biocorision, encrustation and trapped, small sedimentary particles. Once cleaned, 10 dorsal, 10 ventral, and 3 articulated specimens, encompassing the typical range of size of *B. rosea* shells were dried in a stove for 12 hours at 40°C. Next, each shell was weighed to the nearest 0.001 g (see Table 1).

Following McKittic (1987), hydraulic settling velocities were measured by releasing each brachiopod shells in an upright, 35cm wide and 36cm deep (~70 liters), all glass tank, filled with natural, salt water. The standardized size of each shell was estimated by their nominal diameter, that is defined by three mutually perpendicular axes of the shells [shell length (a), height (b) and width (c)], according to the equation (1):

\[
\sqrt[3]{\frac{a \cdot b \cdot c}{27}}
\]

Measurements of the three major axes of each shell were taken with digital calipers to the nearest 1 mm. Settling times were rounded to the nearest 0.1 second for calculation of settling velocities (McKittrick 1987).

Finally, the mode of shell release was standardized, as follow: a- each shell was released just beneath the water-air interface, under calm water conditions; b- a new particle was not introduced into the tank until several minutes (~5 minutes) had elapsed after the settling of the previous one; c- air bubbles were removed from the shells prior to release and, d- each particle was released at least for ten consecutive runs, and the settling times were recorded using a digital chronometer to the nearest 0.1 second for calculation of settling velocities. Terminal settling velocities and falling pattern for 230 consecutive releases were recorded (Table 1).

Attitude during free fall During settling, not only the terminal velocity was recorded, but the falling pattern of each shell was also noted. The falling pattern of unpaired brachiopod valves were categorized according to McKittrick (1987, p. 156, fig. 8) for bivalve mollusk shells, as follows: a-straight fall, b- glide, c- rotate, d- rock and e- oscillate (Fig. 7).

Table 1: Weight, dimension ratios and settling velocities of disarticulated and articulated brachiopod shells.

<table>
<thead>
<tr>
<th>Specimen (DZP)</th>
<th>Valve type</th>
<th>Area (cm²)</th>
<th>Nominal diameter (cm)</th>
<th>Weight (g)</th>
<th>Weight/Area (g/cm²)</th>
<th>Settling velocity (cm/s)</th>
<th>Settling velocity range (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17601</td>
<td>Ventral</td>
<td>2.94</td>
<td>1.19</td>
<td>0.69</td>
<td>0.24</td>
<td>17.32</td>
<td>16.67 – 17.95</td>
</tr>
<tr>
<td>17602</td>
<td>Ventral</td>
<td>2.57</td>
<td>1.08</td>
<td>0.47</td>
<td>0.20</td>
<td>14.97</td>
<td>14.47 – 15.26</td>
</tr>
<tr>
<td>17603</td>
<td>Ventral</td>
<td>2.27</td>
<td>1.07</td>
<td>0.55</td>
<td>0.24</td>
<td>18.84</td>
<td>17.98 – 21.23</td>
</tr>
<tr>
<td>17604</td>
<td>Ventral</td>
<td>2.22</td>
<td>1.05</td>
<td>0.53</td>
<td>0.24</td>
<td>18.66</td>
<td>17.50 – 20.51</td>
</tr>
<tr>
<td>17605</td>
<td>Ventral</td>
<td>2.02</td>
<td>1.00</td>
<td>0.43</td>
<td>0.21</td>
<td>16.81</td>
<td>16.05 – 17.72</td>
</tr>
<tr>
<td>17606</td>
<td>Ventral</td>
<td>1.82</td>
<td>0.95</td>
<td>0.33</td>
<td>0.18</td>
<td>16.06</td>
<td>15.38 – 16.92</td>
</tr>
<tr>
<td>17607</td>
<td>Ventral</td>
<td>1.82</td>
<td>0.92</td>
<td>0.28</td>
<td>0.15</td>
<td>13.13</td>
<td>12.81 – 13.37</td>
</tr>
<tr>
<td>17608</td>
<td>Ventral</td>
<td>1.51</td>
<td>0.83</td>
<td>0.21</td>
<td>0.14</td>
<td>13.61</td>
<td>13.37 – 13.79</td>
</tr>
<tr>
<td>17609</td>
<td>Ventral</td>
<td>1.09</td>
<td>0.72</td>
<td>0.14</td>
<td>0.13</td>
<td>12.54</td>
<td>12.20 – 12.93</td>
</tr>
<tr>
<td>17610</td>
<td>Ventral</td>
<td>0.92</td>
<td>0.65</td>
<td>0.10</td>
<td>0.11</td>
<td>11.60</td>
<td>11.20 – 12.10</td>
</tr>
<tr>
<td>17611</td>
<td>Dorsal</td>
<td>2.38</td>
<td>1.16</td>
<td>0.77</td>
<td>0.32</td>
<td>21.40</td>
<td>20.59 – 23.14</td>
</tr>
<tr>
<td>17612</td>
<td>Dorsal</td>
<td>2.11</td>
<td>1.15</td>
<td>0.69</td>
<td>0.29</td>
<td>19.55</td>
<td>18.36 – 21.23</td>
</tr>
<tr>
<td>17613</td>
<td>Dorsal</td>
<td>2.21</td>
<td>1.13</td>
<td>0.81</td>
<td>0.37</td>
<td>24.19</td>
<td>22.76 – 24.78</td>
</tr>
<tr>
<td>17614</td>
<td>Dorsal</td>
<td>1.87</td>
<td>0.96</td>
<td>0.44</td>
<td>0.23</td>
<td>16.16</td>
<td>15.56 – 16.82</td>
</tr>
<tr>
<td>17615</td>
<td>Dorsal</td>
<td>1.68</td>
<td>0.96</td>
<td>0.39</td>
<td>0.23</td>
<td>16.74</td>
<td>16.28 – 17.28</td>
</tr>
<tr>
<td>17616</td>
<td>Dorsal</td>
<td>1.53</td>
<td>0.88</td>
<td>0.30</td>
<td>0.20</td>
<td>15.49</td>
<td>15.26 – 15.86</td>
</tr>
<tr>
<td>17617</td>
<td>Dorsal</td>
<td>1.41</td>
<td>0.87</td>
<td>0.30</td>
<td>0.21</td>
<td>15.01</td>
<td>14.55 – 15.26</td>
</tr>
<tr>
<td>17618</td>
<td>Dorsal</td>
<td>1.29</td>
<td>0.77</td>
<td>0.22</td>
<td>0.17</td>
<td>13.10</td>
<td>12.81 – 13.76</td>
</tr>
<tr>
<td>17619</td>
<td>Dorsal</td>
<td>0.89</td>
<td>0.66</td>
<td>0.14</td>
<td>0.16</td>
<td>12.57</td>
<td>12.25 – 12.81</td>
</tr>
<tr>
<td>17620</td>
<td>Dorsal</td>
<td>0.76</td>
<td>0.60</td>
<td>0.10</td>
<td>0.13</td>
<td>12.29</td>
<td>12.10 – 12.56</td>
</tr>
<tr>
<td>17621</td>
<td>Articulated</td>
<td>2.75</td>
<td>1.37</td>
<td>1.28</td>
<td>0.47</td>
<td>27.56</td>
<td>26.57 – 30.27</td>
</tr>
<tr>
<td>17622</td>
<td>Articulated</td>
<td>2.15</td>
<td>1.17</td>
<td>0.97</td>
<td>0.45</td>
<td>25.00</td>
<td>23.03 – 26.05</td>
</tr>
<tr>
<td>17623</td>
<td>Articulated</td>
<td>1.62</td>
<td>1.04</td>
<td>0.71</td>
<td>0.44</td>
<td>26.89</td>
<td>25.23 – 28.43</td>
</tr>
</tbody>
</table>
RESULTS Terminal settling velocities Dorsal (brachial) valves have higher average settling velocities (16.65 cm/s) than ventral (pedicle) valves (15.35 cm/s) (Fig. 2). The highest average settling velocity is shown by articulated shells (26.48 cm/s) (Fig. 2). Dorsal and ventral valves with similar weight have different fall velocities, and heavier shells (disarticulated or articulated) have faster settling velocities (Fig. 2).

The nominal diameters (a standardized measure of shell size and weight) for all valves were plotted against weight, and show the close correspondence between dorsal and ventral valves (Fig. 3). Figure 4 exhibits the values of maximum projected cross-sectional area plotted against weight for all valves. Note the generally higher cross-sectional areas of ventral valves. However, dorsal valves with smaller cross-sectional area are heavier, because the unusual, strongly thickened hinge area of dorsal valves of bouchardiids (see Branton 1996 and Simões et al. 2004, for a detailed morphological description of B. rosea).

The close correspondence between settling velocity and weight-per-area ratio of each valve is shown in the figure 5. Larger valves settle faster than smaller valves for both shells. In the dorsal valves the relationships between weight and area is strongly influenced by the thickened condition of the hinge of B. rosea. This explains why only dorsal valves occur toward the large weight/area values (Fig. 5). Figure 6 compares settling velocities of two dorsal and two ventral valves with similar weight per area ratios (0.21 and 0.24 g/cm², respectively). The faster settling velocities are shown by ventral valves. In other words, dorsal valves with the same weight per area ratio than ventral valves will settle slowly.

Settling pattern of shells during fall No matter their orientation (convex-up or down) at release, dorsal and ventral valves establish a stable fall orientation. In all 200 observed settling falls for disarticulated valves, both ventral and dorsal valves settled with in concave-up condition. A similar pattern was observed during the 30 releases of articulated shells, which fell with the more convex ventral valve downward.

Tested B. rosea shells show a combination of three fall-patterns when settling: straight, gliding and rocking (McKittrick 1987) (Fig. 7). Straight-fall is a steady descent of a dorsal/ventral shell along a vertical axis. Gliding motion is the horizontal translation of the shell, during fall. Rocking motion is a rapid tilting motion about a center fall line (McKittrick 1987). These patterns are equal for ventral and dorsal valves of different sizes and weight. However, gliding is more pronounced in ventral valves.
Figure 6 - Comparison between settling velocities of two dorsal (black dots) and two ventral (white dots) valves with similar weight per area ratio. Note the greater settling velocities for ventral valves.

ventral/dorsal valve shapes. However, similarly to mollusk shells (Allen 1984a, McKittrick 1987), the increase in fall velocity of individual brachiopod shell is shown by the heavier shells. This is because the increase in fall velocity of a given shell is a function of the square-root of their mass (Allen 1984a, McKittrick 1987).

Weight and shape are not the only variables that could be responsible for the terminal settling velocity of a given brachiopod shell. By using the nominal diameter we can standardize the size of the shells with different shapes (Futterer 1978), as in the case of ventral and dorsal valves of brachiopods. Figure 3 shows the nominal diameter of the studied ventral and dorsal valves plotted against weight. Note that this relationship is similar in both valves, indicating that their volume-to-weight ratio is comparable. Thus, the differences in settling velocities between dorsal and ventral valves of similar weight results from differences in shape and not in size (see McKittrick 1987, for similar examples between bivalve mollusk and gastropod shells), but shape alone provides only an approximate means to predicting terminal settling velocities (Fig. 6). The more spherically shaped ventral shells have faster settling velocities than the less convex dorsal (Fig. 6). However, when weight is considered (Fig. 2) the dorsal valves have faster settling velocities (16.65 cm/s on average), indicating that the weight also plays a role. Hence, considering valves (dorsal/ventral) with similar nominal diameter, the dorsal will settle faster, despite their flatter shape, probably because they are heavier (thickened hinge area) (Table 1, specimens DZP-17606 and 17615, figure 1).

Finally, in spite of the terminal settling velocities, gliding motion is more pronounced in ventral valves. This may be explained by the fact that the ventral valve is more rounded, where the center of mass is lower. A similar pattern is also shown by rounded bivalve mollusk shells (Allen 1984b, p. 202, McKittrick 1987, p. 160) that are remarkably stable during the terminal fall. On the other hand, the more flat shape of the dorsal valve of B. rosea induces drag and turbulence during the descent. In addition, the center of mass is dislocated to the one extremities of the shell (the thickened hinge portion).

Brachiopod shells tend to settle in a concave-up orientation, preservation of this shell arrangement in a given shell-bed biofabric indicates the absence of bioturbation and tractive movement after settling (but see Clifton & Boggs 1970, for overturning of shells on leesides of migrating bedforms). Hence, combined with other sedimentologic and stratigraphic information, brachiopod orientation in the matrix can be used to distinguish storm versus fair-weather reworking, bathymetric gradients, and brachiopod shell-beds generated by allochthonous versus autogenic processes (see McFarland et al. 1999, for a detailed Middle Ordovician example, and Tomašových 2004, for Triassic examples with brachiopod concentrations). Since concave-up orientations consistently exhibit higher drag than convex-up orientations,
disarticulated brachiopod shells are typically found convex-up in paleoenvironments dominated by traction transport (Savarese 1994). For example, Sanchez et al. (1991) described in detail the taphonomy of brachiopod-dominated assemblages of the Silurian of western Argentina, noting that brachiopod proximal storm shellbeds are dominated by shells in a concave-down orientation. Based on the data reported here, the brachiopod shells were re-oriented by tractive currents after the storm, which is also supported by their frequent imbrication in the matrix (Sanchez et al. 1991, p. 314).

Data from experiments herein conducted, can also be used to rank the shells (e.g., disarticulated versus articulated) according to their settling velocities. The average settling velocities for B. rosea is 15.35 cm/sec for ventral valves and 16.65 cm/sec, for dorsal ones. Closed articulated shells have faster average settling velocities (26.48 cm/sec). Hence, in shell-beds that accumulated through hydraulic processes and were not disrupted by intrasratigraphic biological active (see Tomašových 2004, for examples with fossil brachiopods) the articulated shells should occur at the base of the bed, as a result of their greater falling velocities. However, the now well-known biofabric of brachiopod-dominated concentrations containing terebratulids Rhaetina gregaria from Frata Formation (Upper Triassic, West Carpathians) (Tomašových 2004) offer some revealing patterns (Fig. 8). Brachiopod-deposits, such as biofloatstones and biointra-packstones with complex internal structures that were generated by high-energy events (storms) show large closed articulated valves at the base of the deposits having nested, concave-up brachiopod shells upward (Fig. 8). According to obtained data those fabrics indicate that the shells experienced suspension settling during their deposition. Hence, our data are in strong agreement with the stratigraphical observations of Tomašových (2004). Because bouchardiid-dominated concentrations are common in the Tertiary of South America (see Martínez 1994), our data and assumptions may also be directly tested in the South American geological record.

In synthesis, disarticulated brachiopod shells stabilize in a concave-up fall position, settling mainly by rocking/gliding motions, regardless of size or degree of concavity. However, their final orientation in the matrix will most likely reflect their “post-settling history”, as sedimentary particles. Once settle, the shells tend to adjust to local conditions of currents and waves until a stable posture is achieved, or be re-oriented by the biological activity in the substrate. In some cases, however, such final postures will reflect their hydrodynamic behavior and preferred orientations that are also influenced by shell geometry and flow/ wave conditions (Savarese 1994, Tomašových 2004).

Paleoecologic implications In comparative taphonomy (Brett & Baird 1986), the proportion of ventral to dorsal valves in brachiopod fossil concentrations (Brett & Baird 1986) and modern environments (Noble & Logan 1981, Hallman et al. 1996, Simões & Kowalewski 2003) is used to infer shell transport, environment energy, and residence time in the nearshore water interface. Similarly to clams in which the proportion of left to right valves deviates from a one-to-one ratio (Martin-Kaye 1951, Lever 1958, Lever et al. 1961, Kornicker et al. 1963, Lever & Thijssen 1968), brachiopod-rich concentrations also exhibit biased ratios of dorsal and ventral valves. Unfortunately, for brachiopod shells little is known about the mechanisms causing this phenomenon. In tidal flat and beach environments biased ratios seem to be a result of differential transport of one valve (see Hallman et al. 1996, Simões & Kowalewski 2003, for modern environment examples). Although Noble & Logan (1981) noted that in assemblages of Terebratulina septentrionalis preferential destruction of the dorsal valve may occur without any significant lateral transport, tumbling experiments with B. rosea shells (Torello et al. 2002 and Torello 2004) showed that destruction rates do not vary significantly between ventral and dorsal valves. The bias between dorsal and ventral brachiopod valves observed in many fossil concentrations and modern environments (e.g., beaches) cannot be viewed solely as the result of differential resistance to fragmentation and abrasion. The lower average settling velocities of B. rosea ventral shells suggest that they could be transported for greater distances than dorsal shells. This may help to explain some modern accumulations of B. rosea shells generated under shallow water conditions (see next section) exhibiting a strong bias in favor of convex ventral valves. In this case, the flat dorsal valves are likely to settle early and lag behind. In this particular case the valve ratio may be one important taphonomic attribute to recognize authochthonous to allochthonous assemblages (but see Noble & Logan 1981, for a distinct interpretation) and to track the history of a given fossil assemblage, especially when combined with other taphonomic signatures (see below).

A modern environment example: the Itamambuca beach, northern coast of São Paulo State, Brazil Present-day death assemblages of B. rosea shells found in sandy beaches of the northern coast of São Paulo State, Brazil, provide a unique example to test some of observations made in the laboratory, regarding the terminal settling velocities of brachiopod shells. This comparison is important, because little is known about the taphonomy and sorting of brachiopod shells in unconsolidated beach deposits. In which part of modern and ancient world brachiopod shells are abundant on beach environments (see Ahmed & Hameed 1999, for other rare occurrence in a Pakistan beach)?

Sands in the Itamambuca beach contain brachiopod shells, but the source of these shells are probably the subtidal settings (10 to 35 meters of depth) in front of the beach, and adjacent bays (Ubatuba, Ubatumirim and Picinguiba bays) where brachiopod-rich assemblages are common (Carrol et al. 2003, Kowalewski et al. 2002, Rodland et al. 2004, Simões et al. 2004).

A noteworthy feature of the brachiopod accumulations in
Itabumbea beach is the biased proportion between dorsal and ventral valves. In fact, 95.05% (dorsal n=20; ventral n=384) of brachiopod shells found in the surficial deposits are ventral valves. As discussed by several authors based on clams the susceptibility to transport is a complex matter, since it is a function of the interaction between shell size, weight, shape, and environment, among others (e.g., the hole effect, see Lever et al. 1961). Because B. rosea is a free lying brachiopod that does not live in beach environments, their shells must have been transported onshore from adjacent, brachiopod-rich habitats. Samples of B. rosea shells collected from shallow, protected waters of the Ubataba Bay do not display such pronounced deviations in valve ratio (36%-64% and 50%-50% in accumulations at 10 and 15 meters water depth, respectively, Simões & Kowalewski 2002). Hence, it seems likely that the convex ventral valves are transported onshore preferentially, whereas the flat ventral valves are likely to lag behind. These data are in accordance with some experimental taphonomic studies (Hallman et al. 1996), which demonstrated that convex shells of bivalve mollusks move further than planar shells. CONCLUSIONS 1- Dorsal valves of B. rosea have faster settling velocities than ventral valves; 2- Differences in the settling velocities of dorsal and ventral valves of similar weight results from differences in shape and weight, and not in size; 3- Shape alone provides only an approximate means to predicting brachiopod shell terminal settling velocities. When the weight per area ratio is considered, the ventral shells that are more spherically in shape have faster settling velocities. This relationship is not exhibited, however, when valves (dorsal/ventral) with similar nominal diameter are compared. Dorsal valves will settle faster, despite their less spherical shape, probably because their heavier (thickened) hinge structure; 4- Gliding motion is more pronounced in ventral valves. Dorsal valves commonly exhibit rocking movement, which is favored by the dislocated center of mass, of these valves, where the heavier and thickened portion of the shell is at one of the extremities (cardinal margin); 5- During settling dorsal and ventral valves will settle in a concave-up posture. Preservation of this pattern in the fossil record is a good indication of the absence of bioturbation and/or tractive movement after settling and final burial; 6- The lower average settling velocities of B. rosea ventral shells may favor transport. The “flat” dorsal valves with their more rapid settling velocities will settle first and lag behind. Thus, in the bouchardia-rich fossil assemblages valve ratio may be one important taphonomic attribute to recognize authochtonous to allochthonous assemblages. In this context, the bias between dorsal and ventral brachiopod valves observed in many brachiopod fossil assemblages cannot be viewed as the result of differential resistance to fragmentation, alone; 7- When combined with other taphonomic signatures the ventr/dorsal ratio may be useful in assessing the degree of transport bias in brachiopod fossil assemblages, and, more generally, can provide insights into the impact of transport-related biases on brachiopod fossil concentrations generated in shallow water conditions. Acknowledgments FAPESP and CNPq provided generous financial support for this study. This is a contribution to the FAPESP (00/12659, 02/13552) and CNPq (300448/2003-1) projects. The editor (José Affonso Brod) and two anonymous reviewers offered valuable comments and suggestions that improved this paper. References Ahmed M. & Hameed S. 1999. Animal communities of the exposed sandy beach at clifton in Karachi (Pakistan), Pakistan Journal of Zoology, 31:211-217. Alexander R.R. 1984. Comparative hydrodynamic stability of brachiopod shells on current-sourced arenaceous substrates. Lethaia, 17:17-21. Alexander R.R. 1986. Life orientation and post-mortem reorientation of Chesterian brachiopod shells by paleocurrents. Palaios, 1:303-311. Allen J.R.L. 1984a. Experiments on the settling, overturning and entrainment of bivalve shells and related models. Sedimentology, 31:227-250. Allen J.R.L. 1984b. Experiments on the terminal fall of bivalve mollusks loaded with sand trapped from a dispersion. Sediment Geol, 39:197-209. Behrensmeyer A.K. & Waton R.L. 1969. Differential sorting of pelecypod valves in the swash zone. J. Sedim. Petro., 39:1559-1565. Berthois L. 1965. Recherches sur le comportement hydraulique des débris organiques. Sedimentology, 5:327-342. Best M.M.R. & Kidwell S.M. 2000a. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. I. Environmental variation in shell condition. Paleobiology, 26:80-102. Best M.M.R. & Kidwell S.M. 2000b. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. II. Effect of bivalve life habits and shell types. Paleobiology, 26:103-115. Boyajian G.E. & Thayer C.W. 1995. Clam calmarity: a recent supratidal storm-deposit as an analog for fossil shell beds. Palaeontol, 10:484-489. Braithwaite C.I.R. 1973. Settling behavior related to sieve analysis of skeletal sands. Sedimentology, 20:251-262. Brett C.E. 1995. Sequence, stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaeontol, 10:597-616. Brett C.E. & Baird G.C. 1986. Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaeontol, 1:207-227. Brett C.E. & Baird G.C. 1997. Epiboles, outages, and ecological evolutionary bioeventiaphonomy, ecology, and biogeo graphic factors. In: C.E. Brett & G.C. Baird (eds.) Paleontological events: stratigraphic, ecological, and evolutionary implications. Columbia University Press, pp.: 249-284. Brett C.E., Baird G.C., Speyer S.E. 1997. Fossil Lagerstatten: stratigraphic record of paleontological and taphonomic events. In: C.E. Brett & G.C. Baird (eds.) Paleontological Events: stratigraphic, ecological, and evolutionary implications. New York, Columbia University Press, pp.: 3-40. Brunton C.H.C. 1996. The functional Morphology of the Recent brachiopod Bouchardia rosea. Acta Zoológica, 77:233-240.
The settling pattern of Brachiopod shells: stratigraphic and taphonomic implications to shell bed formation and paleoecology

Savarese M. 1994. Taphonomic and paleoecological implications of flow-induced forces on concavo-convex articulate brachiopods: an expe-

Revista Brasileira de Geociências, Volume 35, 2005

