TECTONOESTRATIGRAFIA DA BACIA ESPINHAÇO NA PORÇÃO CENTRO-NORTE DO CRÁTON DO SÃO FRANCISCO: REGISTRO DE UMA EVOLUÇÃO POLIISTÓRICA DESCONTÍNUA

ANDRÉ DANDERFER¹ & MARCEL AUGUSTE DARDEENNE²

Abstract TECTONOESTRATIGRAPHY OF THE ESPINHAÇO BASIN IN THE NORTHERN PART OF THE SÃO FRANCISCO CRATON: RECORD OF A DISCONTINUOUS POLYHISTORIC EVOLUTION This paper presents the tectonostratigraphic evolution of the northern segment of the Espinhaço Range, located in the northern part of the São Francisco craton. The stratigraphic framework was documented in a systematic way through recognition and characterization of eight syntheses that are equivalent to unconformity-bound units: Algódão, São Simão, Sapiranga, and Pajéu (lower interval), Bom Retiro, São Marcos, and Sítio Novo (intermediate interval) and Santo Onofre (upper interval). The Bom Retiro and São Marcos syntheses correspond to intracontinental sag basins. The Pajéu, Sítio Novo and Santo Onofre syntheses are related to the evolutionary stages of the rift basin; the first two basins were generated by extensional tectonics, and the last one by transcurrent tectonics. The Algódão and Sapiranga syntheses are interpreted as rift-sag basins. Finally, the São Simão synthesis is related to intracontinental magmatism. Based on these new stratigraphic subdivisions and their regional tectonic context, we conclude that the "Espinhaço Basin" records a polycyclic depositional history, alternating episodes of distinct tectonic regimes to the long of time.

Keywords: Espinhaço, stratigraphy, basin analysis, unconformity-bound unit, Proterozoic, São Francisco Craton

Resumo Neste trabalho apresentam-se os aspectos gerais vinculados com a evolução tectonoestratigráfica do prolongamento setentrional da Serra do Espinhaço, parte integrante da bacia Espinhaço e que se situa na porção norte do Cráton do São Francisco. O arcabouço estratigráfico desse segmento foi reconstruído de forma sistemática, por meio do reconhecimento e da caracterização de oito sintaxes, que equivalem a unidades limitadas por discordâncias ou descontinuidades estratigráficas de extensão regional na bacia: Algódão, São Simão, Sapiranga e Pajéu, definindo o intervalo inferior, Bom Retiro, São Marcos e Sítio Novo, remontando o intervalo intermediário e, Santo Onofre, finalizando o emplacamento do Espinhaço. Os sintemas Bom Retiro e São Marcos correspondem ao preenchimento de duas flexuras de interior continental, enquanto as assinaturas sedimentares dos sintemas Pajéu, Sítio Novo e Santo Onofre são compatíveis com o desenvolvimento de bacias do tipo rifte, as duas primeiras geradas por tectônica distensiva e a última unidade, mediante tectônica transversal; os sintemas Algódão e Sapiranga são interpretados como o preenchimento de duas bacias do tipo rifte-flexural, ao passo que o Síntema São Simão é relacionado apenas com um magmatismo intracontinental, sem sedimentação associada. Com base nesse contexto e no acervo geocronológico disponível, concluir-se que a bacia Espinhaço registra uma evolução descontínua (no sentido temporal), policíclica (no sentido estratigráfico) e poliistórica, alternando episódios de regimes tectônicos distintos ao longo do tempo.

Palavras-chave: Espinhaço, estratigrafia, análise de bacias, discordância, Proterozóico, Cráton São Francisco

INTRODUÇÃO As sucessões estratigráficas da bacia Espinhaço que ocorrem na porção centro-oriental do escudo Atlântico, estão materializadas em dois domínios fisógráficos: a Serra do Espinhaço e a Chapada Diamantina. As rochas sedimentares desses domínios têm sido incluídas, classicamente, no Supergrupo Espinhaço, com evolução bacinal desde o período Estariano, há cerca de 1.750 Ma, até o Toniano, em torno de 850 Ma (Schobbenhaus 1993). Neste trabalho foram investigados os aspectos da evolução tectonoestratigráfica do prolongamento setentrional da Serra do Espinhaço (Fig. 1), entre os paralelos 11°45' e 14°00'S, para elucidar os eventos de formação de bacia. No contexto geotecônico, essa área situa-se na porção ocidental do corredor de deformação do Paramirim (Alkimim et al. 1993), norte do Cráton do São Francisco (Almeida 1977). A maioria dos autores admite origem tafrogênica, intracrática e aulacogênica para a bacia Espinhaço nesse local (Sá 1981, Costa & Inda 1982). Já Schobbenhaus (1993) postula a existência de dois riftes superpostos.

O arcabouço tectônico do Espinhaço setentrional é marcado por padrão estrutural de orientação preferencial NNW-SSE, no qual é caracterizado um sistema de dobrar e falhas regionais com vergência dupla. Esse arcabouço pode ser abordado segundo quatro compartimentos ou blocos tectônicos, limitados por falhas regionais NNW-SSE (Danderfer 2000). De oeste para leste, estes compreendem os compartimentos (a) Guanambi-Correntina, limitado a leste pela falha do Muquém, (b) Ibitirama, balizado pelas falhas do Muquém e de Santo Onofre, (c) Boquira, situado entre as falhas de Santo Onofre e do Carrapato e (d) Paramirim, exposto a oeste da falha do Carrapato (Fig. 1). As investigações realizadas indicam que a principal família de estruturas tectonometamórficas
Tectonoestratigrafia da Bacia Espinhaço na porção centro-norte do Cráton do Sã Francisco: registro de uma evolução poliástrica descontínua

desenvolvida na região se relaciona ao último e mais importante evento de transformação da bacia Espinhaço, sem indícios de inversão positiva anterior. Segundo os argumentos de Schobbenhaus (1993) e Danderfer (2000), a idade desse evento é brasileira, entre 650 e 500 Ma.

Esta pesquisa foi motivada pela existência de diversas questões geológicas acerca desse segmento, entre as quais cita-se o conhecimento deficiente de seu arcabouço tectonoestratigráfico. O estudo envolveu a reavaliação de informações publicadas, incluindo dados geocronológicos, atividades de campo, elaboração de mapa geológico digital com auxílio de Sensoriamento Remoto, levantamento de diversas seções transversais à Serra do Espinhaço e detalhamentos estratigráficos e estruturais, cujo acervo em escala 1:250.000 encontram-se em Danderfer (2000).

Nos limites do segmento estudado há vários modelos estratigráficos propostos por diferentes autores, com designações distintas para as unidades litoestratigráficas, mas a maior parte do conhecimento provém dos mapeamentos sistemáticos realizados durante os projetos Chumbo (Schobbenhaus 1972) e Santo Onofre (Costa & Silva 1980). O reconhecimento de unidades limitadas por discordâncias ou descontinuidades estratigráficas regionais na bacia – os Sintemas (Chang 1978, Sal- vador 1994) –, aliado ao controle da geometria estrutural da área, favoreceram organizar e reconstruir o arcabouço desse segmento de modo mais sistemático e eficaz. No total, foram identificados e descritos oito sintemas, cada qual registrando um evento formador de bacia e que, da base para o topo, compreendem os Sintemas Algodo, São Simão, Sapiranga e Pajé, no intervalo inferior, Bom Retiro, São Marcos e Sítio Novo do intervalo intermediário, e Santo Onofre, o superior do empilhamento Espinhaço (Figs. 1 e 2). Em cada intervalo procurou-se definir os sistemas deposicionais, o estilo de preenchimento bacial e o sítio tectônico, em base às variações laterais e verticais de fácies de cada unidade. Intrusões de gabro e gabro-diásio são frequentes, sob a forma de soleiras, mas não ocorrem na pilha sedimentar dos Sintemas Sítio Novo e Santo Onofre.

Neste trabalho, os sintemas são entendidos como ciclos estratigráficos de 1º ordem, com duração a depender da intensidade de subsidência durante a geração do espaço bacial que acomodou a unidade. Eles representam unidades estratigráficas que são “naturais” que podem ser empregadas, sem margem de erro maior, para definir o empilhamento e a evolução geológica de uma bacia deformada (Salvador 1994). Ainda assim, as unidades litoestratigráficas são as mais frequentemente utilizadas em cartografia geológica, motivo pelo qual, neste trabalho, procurou-se formular uma classificação com base em critérios litoestratigráficos (Fig. 2). A sistematização levou em conta as características do arcabouço aqui descrito, visto que as unidades litoestratigráficas também se individualizam por discordâncias regionais, mesmo que as diferenças litológicas sejam pequenas (Salvador 1994). A denominação formal de sintemas limitados por discordâncias e de unidades litoestratigráficas emprega designações existentes para evitar a desnecessária multiplicidade de nomes. Esse procedimento foi possível devido à equivalência relativa entre as unidades estudadas e as cartografadas em projetos anteriores (Fig. 3). Ape sar de cunhada a regra da prioridade nas denominações, alguns termos foram redefinidos ou abandonados, ao passo que outros, novos, criados. Por outro lado, um sintema pode englobar uma ou mais formações. No último caso, equivalente a subsintemas e retomadas em um grupo. Ademais, dois ou mais sintemas indivíduos podem constituir um grupo, conforme a conveniência. Por fim, os termos ‘Supergrupo Oliveira dos Brejinhos’, ‘Supergrupo Espinhaço’ e ‘Supergrupo São Francisco’ são empregados para englobar unidades supostamente do Paleoproterozoico superior (Estratiano; 1,8 a 1,6 Ga), do Mesoproterozoico (1,6 a 1,0 Ga) e do Neoproterozoico inferior (Toniano-Criogeniano; 1,0 Ga a 650 Ma), respectivamente.

ARCABOUÇO TECTONOESTRATIGRÁFICO SINTEMA ALGODÃO

Para fins descritivos, o Sintema Algodo pode ser dividido em três conjuntos litofaciológicos distintos, não cartografados até o momento: basal (AAG), intermediário (AGI) e superior (AGS). Em geral, a seção é dominada por fácies terrigenas, com conspicuas variações laterais e verticais de fácies, sobretudo nos conjuntos AAG e AGI, o que dificulta a compreensão de sua arquitetura estratigráfica. O conjunto AGB tem no máximo 750 m de espessura e consiste de conglomerados e brechas sedimentares, em maior volume na base do pacote, e de arenitos feldspácticos com estratificação acanalada e tabular, subordinadamente quartzo-arenitos e litoarenitos médios a muito grossos até microconglomeráticos distribuídos por toda a seção. No conjunto AGI (máx. de 1.800 m) predominam arenitos quartzo-feldspácticos finos a médios, raramente grossos, com intercalações subordinadas de conglomerados e pelitos, ocasionalmente lentes de brecha sedimentar e metabasalto. O conjunto AGS (máx. de 2.000 m) é dominado por arenitos quartzo-feldspácticos, finos a médios, bem selecionados e com estratificação cruzada de grande porte. As características dos conjuntos AAG e AGI indicam deposição em leques aluviais, fluvial entrelagado e eólico, entremeada de sedimentos marinhos ou lacustres. Dados de paleocorrente das fácies fluviais sugerem fonte situada a leste. As do conjunto AGB são de deposição eólica.

O Sintema Algodo registra o primeiro episódio de formação de bacia sedimentar na região, com características em parte comparáveis com o preenchimento de rift. Os conjuntos basal e intermedio, com vulcanismo contemporâneo, denotam elevadas taxas de sedimentação. O superior pode corresponder a uma fase de subsidência mais lenta, talvez relacionada com a compensação tectoflússional pós-rift ou sgg. Segundo Danderfer (2000), não há uma unidade cronocorrelata ao Sintema Algodo na Chapada Diamantina, mas o autor sugere que esta pode corresponder a uma unidade mais antiga que o magmatismo ácido de 1,75Ga, descrito, na região, como parte da Formação Rio dos Remédios (Schobbenhaus et al. 1994, Babinski et al. 1994).
Figura 1 – Mapa geológico do Espinhaço setentrional (mod. de Danderfer 2000).
Figura 2 – Empilhamento estratigráfico da área estudada (mod. de Danderfer 2000), mostrando uma classificação baseada no reconhecimento de unidades limitadas por discordâncias (ULD) e outra na litoestratigrafia convencional.

Sistema São Simão
O termo é utilizado, neste trabalho, em substituição à ‘Unidade Rio dos Remédios’, proposta por Costa & Silva (1980) e corresponde a um pacote de rochas vulcânicas dispostas em faixas descontínuas e estreitas no extremo sudeste do bloco de Boquira. A mudança se justifica em virtude de o termo ‘Rio dos Remédios’ já ser utilizado para designar uma unidade litoestratigráfica na região da Chapada Diamantina. Ambas unidades estão isoladas na bacia, separadas por mais de 40 km e não há evidências radiométricas que justifiquem a sua correlação, exceto a semelhança litológica.

A porção basal do Sistema São Simão está diretamente sobreposta às rochas do Complexo Paraimirim, mas a natureza do contato está obscurecida por cisalhamento associado à falha do Carrapato, a qual afetou rochas acima e abaixo da superfície que as limita. Em princípio, esse sistema não tem posição estratigráfica claramente definida, mas clastos de rochas vulcânicas de composição semelhante à das intercaladas neste sistema ocorrem em conglomerados basais do Sistema Sapiro, o que sugere que o último é mais jovem que o Sistema São Simão. Por outro lado, este sistema é interpretado como mais jovem que o Sistema Algodoan, apesar...
de ausência de contato direto e de evidências de vulcanismo, ou de clastos derivados, similar ao do sintema São Simão. Dados geocronológicos são necessários para elucidar esse ponto.

A falta de evidências diagnósticas de ambiente da pilha vulcânica deste sintema, a ausência de relações de contato evidentes com as demais unidades da bacia Espinhaço, e a ausência de depósitos vulcanoclásticos ou siliciclásticos dificultam a interpretação do ambiente de vulcanismo, mas este é normalmente esperado em sítios vulcânicos associados com bacias tafrogênicas (Orton 1996). Ademais, o sítio deposicional dessa unidade está deslocado em relação ao bacias anterior. Assim, é apenas possível supor que essa unidade represente o registro de magnetismo ácido, cuja preservação foi favorecida por uma fase subsequente de “captura tectônica”, talvez relativa a estágio seguinte de formação da bacia. Portanto, essa unidade registra o segundo episódio da evolução da bacia Espinhaço na região e se correlaciona com a Formação Rio dos Remédios, na Chapada Diamantina, com idade de ca. 1.75 Ga (Estariano inferior) e gerada durante o extensivo magnetismo felsício do domínio do paleocentro de São Simão.

Sintema Sapiranga O Sintema Sapiranga, aqui proposto, consiste de conglomerado basal seguido de expressivo volume de arenito. No topo da unidade, ocorrem restrições intercalações de metapélito. Suas exposições distribuem-se ao longo da margem centro-sudeste do bloco de Boquira e, como o Sintema Algodão, estas rochas foram, durante o Projeto Chumbo (Schobbenhaus 1972), denominadas como Formação São Marcos. Costa & Silva (1980), e trabalhos subsequentes, as incluem na Unidade e/ou na Formação Pajéu, sem maiores considerações. No presente trabalho, o Sintema Sapiranga é interpretado como sequência distinta e relativamente mais velho do que a Unidade Pajéu e mais jovem do que os sintemas Algodão e São Simão.

No acabamento estratigráfico estudado, o Sintema Sapiranga está sobreposto às rochas metassedimentares do Sintema Algodão, por contato deposicional brusco, subconcordante e com caráter...
Tectonoestratigrafia da Bacia Espinhaço na porção centro-norte do Cráton do são Francisco: registro de uma evolução poliestrófica descentíca

semi-regional. Localmente, os estratos acima e abaixo do contato dispõem-se em discreta angularidade. O contato situa-se na base de extenso e espesso pacote de conglomerados que marcam uma mudança brusca no regime deposicional. A presença de clastos de rochas sedimentares e vulcânicas felsíticas nos conglomerados mais basais sugere que a área-fonte consistia de unidades sotopostas. A parte mais espessa do Síntema Sapiranga, situada na sua porção central, tem cerca de 3.800 m.

O síntema pode ser dividido em três conjuntos litofaciológicos com expressão areal, não cartografados neste trabalho, e que compreendem o basal (SBP), intermediário (SPI) e o superior (SPS). O conjunto SBP tem até 400 m de espessura e consiste de conglomerado rico em fragmentos de rochas vulcânicas e arenitos feldspáticos, com estratificação cruzada acanalada e planar. O conjunto SPI, de espessura superior a 3.000 m, é uma monotona sucessão de arenitos puros a feldspáticos, finos a médios e com estraços cruzados de grande porte. O conjunto SPS, com espessura mínima de 300 m, é composto por arenitos finos a médios, com intercalações subordinadas de pelitico e vulcânicas intermediárias (> 50 m de espessura) situadas no topo. De modo geral, a sucessão de fácies da unidade apresenta granodrecessência ascendente. As variações laterais e verticais de fácies mais marcantes ocorrem principalmente no conjunto basal.

Assim, as fácies do conjunto SBP indicam deposição em ambiente de leques aluviais e fluvial, ao passo que as do SPI em ambiente eólico e do SPS em sistemas costeiros. De modo geral, as fácies dessa unidade são semelhantes às do Síntema Algodão, o que sugere um provável segundo episódio de rifamento na região, seguido de subsidência passiva, talvez termoflexural, como sugere a natureza litológica dos seus intervalos médio e superior.

Síntema Pajeú
Esta unidade é a seqüência vulcano-sedimentar basal do Espinhaço setentrional mapeada no Projeto Chumbo como Formação Pajeú (Kaul 1970) e, posteriormente, melhor cartografada e descrita no Projeto Santo Onofre (Costa & Silva 1980). As rochas da unidade compreendem conglomerados, arenitos e pelitos, subordinadamente rochas vulcânicas situadas no topo da unidade. O Síntema Pajeú ocorre como estreita e longa faixa na borda leste do bloco de Boinha, descontínua na parte central, e dividida nos segmentos meridional e setentrional. Apesar da descontinuidade, ambos domínios se correlacionam por meio do acervo litofaciológico e posição estratigráfica. No presente trabalho, se mantém a integridade do corpo principal da Formação Pajeú, como descrito na literatura, exceto pela subtração das sucessões dos sintemas Algodão e Sapiranga, aqui definidas. A espessura estimada na porção setentrional do Síntema Pajeú é variável, mas aumenta progressivamente para o norte, onde alcança 2.500 m. Contrariamente, no segmento meridional, a espessura aumenta para sul, até atingir valores superiores a 3.000 m.

Grande parte do limite inferior deste sintema é uma superfície de contato com rochas do Complexo Paraírim, que define, assim, importante não-conformidade na bacia, exceto no extremo sul, onde a unidade assenta sobre o Síntema Sapiranga, o que é marcado por brecha quebra nas condições de deposição. Grande parte da superfície está sotoposta a fácies arenos-conglomeráticas, com evidências de erosão profunda do embasamento. No segmento meridional, a superfície de contato está transformada por deformação e desacoplamento tectônico entre a cobertura e o embasamento, resultante da inversão da bacia (Danderfer 2000).

Em contraste, a Formação Ipuçaça compreende arenitos finos a muito finos, interestratificados com pelitos. Localmente ocorrem brechas intraformacionais. Este arranjo define, aparentemente, rítmitos, ora mais arenasos, ora mais pelíticos, sobrepostos à Formação Riacho Fundo. São comuns, nestas rochas, estruturas de fluxo gravitacional, de deformação penecontemporânea e laminação do tipo climbing ripples. A formação ocorre ao longo da porção norte do segmento setentrional e sul do meridional, podendo alcançar espessura pouco superior a 1.000 m. A natureza sedimentar da unidade e dos processos deposicionais são aqui reconhecidos pela primeira vez, o que justifica sua individualização no Síntema Pajeú. Parte relevante de suas rochas foi considerada por Costa & Silva (1980) como produtos de metamorfismo de contato.

A Formação Bomba, como definida por Kaul (1970), reúne as rochas vulcânicas, vulcanoclasticas e epicitálicas felsíticas a intermédias que ocorrem apenas no topo do segmento meridional do Síntema Pajeú. A espessura máxima da unidade é de 600 m. As concepções anteriores sobre a gênese e posição estratigráfica desta formação não eram claras, pois suas rochas foram ora definidas como intrusivas, ora extrusivas e, ainda, como ocorrências correlatas com rochas vulcânicas da Formação Rio dos Remédios e, assim, mais velhos do que a sedimentação do Síntema Pajeú, ou mesmo mais novos na pilha sedimentar. Entretanto, a presença de amigdalas e feições de interação com água e sedimentos durante a erupção e a interdigitação de fácies vulcânicas com epicitálicas, esclarecem bem essas questões.

As formações Riacho Fundo e Ipuçaça definem, em conjunto, uma seqüência de fácies terrígenas com baixa maturidade textural e mineral, granodrecessência ascendente, associada a afinamento de camadas e aumento da fração pelítica para o topo. Em ambas, e também na Formação Bomba, há variações verticais e laterais de fácies que, apesar disso, podem ser previsíveis dentro da arquitetura bacia de do Síntema Pajeú. Uma atividade hidotermal, designada por Danderfer (2000) do hidothermalismo “verde”, ocorreu nos estágios finais da formação da bacia correspondente e atingindo todas as rochas do sintema descrito, com desenvolvimento de paragêneses com, dentre outros, quartzo, tremolita-actinolita, granada e sulfetos.

O Síntema Pajeú representa o preenchimento tópico de rife durante a evolução da bacia Espinhaço. Estima-se que a geração dessa bacia tenha transcorrido em algum instante do Eoceno, entre 1,75 e 1,65 Ga. As características sedimentares do sintema permitem interpretar a configuração da bacia como dois hemi-grábens, com falhas de borda convergentes de orientação próximo de E-W. Nestas sub-bacias, as rochas da Formação Riacho Fundo representam deposição em leques aluviais, fluvial, entrelaçado e eólico, cobertas pelas fácies delta-lacustre retrogradacional.

Revista Brasileira de Geociências, Volume 32, 2002

Sintema Bom Retiro

O Sintema Bom Retiro consiste de depósitos arenosos que, nos projetos Chumbo (Schobbenhaus 1972) e Santo Onofre (Costa & Silva 1980), foram designados de Formação Bom Retiro e Unidade Bom Retiro, respectivamente. Trabalhos posteriores adotam, sem restrições, os limites e a hierarquia de formação para essa unidade, posicionada na base do intervalo médio do Espinhaco setentrional, imediatamente acima do Sintema Pajéj. A cartografia do Sintema Bom Retiro durante esta pesquisa coincide bastante com a dos trabalhos anteriores e define uma longa e estreita faixa exposta ao longo da borda leste do bloco de Boquira. O seu limite inferior é marcado, por longa extensão, pelo seu contato com rochas do Sintema Pajéj, ora com rochas sedimentares das formações Riacho Fundo e Ipucaiba, ora com vulcânicas da Formação Bomba. Em ambos casos, há uma quebra brusca na sucessão litofaciológica, não raro com certa angularidade entre os estratos. Na parte central, área onde a faixa do Sintema Pajéj é descontínua, as rochas do Sintema Bom Retiro cobrem rochas do Complexo Paramirim, assinalando uma inconformidade. No extremo sul, a unidade está sobreposta às rochas dos sintemas Sapiranga e Algodoá.

A arquitetura estratigráfica do Sintema Bom Retiro é, comparativamente, às outras unidades, simples e marcada por espessa e monotona sequência de quartzo-arenitos texturalmente maduros, bem selecionados, com variações laterais e verticais significativas de fácies e estratificações cruzadas de grande porte a gigantes. Estas características contrastam com as das unidades adjacentes e provavelmente retratam condições deposicionais de regime eólico “seco” (i.e., com lençol freatico profundo). A espessura da uni-dade é variável ao longo de sua extensão e situa-se entre 500 m e mais de 4.000 m no setor setentrional. Os depocentros se situam, aparentemente, nas extremidades sul e norte, coincidindo com os do Sintema Pajéj. As menores espessuras ocorrem no segmento centro.

Do exposto se conclui que o contato inferior do sintema marca uma mudança significativa das condições tectônicas. As sequências dos sintemas Pajéj e Bom Retiro não mostram afinidade ou de relação temporal da deposição com a do Sintema Bom Retiro. Ademais, a deposição das fácies dos sintemas inferiores foi controlada por fatores tectônicos e climáticos que não recorrem na superior, a qual marca uma aparente quiescência do sitio bacinal. A discordância é marcada pelo aporte de areias composicionais e texturalmente maduras e depositadas, sob regime eólico, sobre fácies diversas e de baixa maturidade do Sintema Pajéj.

Assim, o Sintema Bom Retiro é interpretado como produto de sedimentação persistente, de duração relativamente prolongada, sem alterações significativas das condições ambientais e natureza do suprimento de clastos. É provável que esta sucessão reflita o preenchimento de uma flexura intracontinental, formada logo após o evento rifte Pajéj, sob baixa taxa de subsidência, sem movimentos tectônicos significativos. A unidade pode ser correlacionada com as formações Mangabeira, na Chapada Diamantina, e Galho do Miguel, no Espinhaco meridional, e ser mais antiga do que intrusivas básicas da primeira, de idade 1,5 G (Babinski et al. 1999).

Sintema São Marcos

O Sintema São Marcos ocorre no interior de longa faixa de largura variável ao longo de toda a porção centro-oriental do compartimento de Boquira, e se prolonga para sul, onde participa do domínio fisiográfico do Espinhaco central. A espessura da unidade cresce gradualmente de sul e norte em direção à porção central, de cerca de 2.500 m a próximo de 9.000 m. A coluna sedimentar do sintema se divide, da base para o topo, nas formações Riacho do Bento, Mosquito e Fazendinha, e correspondem às propostas por Costa & Silva (1980), com ligeiras modificações no traçado dos seus limites cartográficos.

As formações Riacho do Bento (máx. de 2.800 m) e Fazendinha (máx. de 4.000 m) são litologicamente semelhantes e consistem de metarenitos muito finos a grossos, feldspáticas ou micáceas, e com estratificações cruzadas diversas, com intercalações subordinadas de metapelito e raros níveis de metarenito muito grossos a microconglomeráticos. Os protólitos das rochas de ambas unidades foram dominantemente depositados por fluxos oscilatórios relacionados a correntes de tempestade e de marés. Contudo, a base da mesma consiste de fácies eólica de nível fráctico elevado. Já a Formação Mosquito (máx. de 2.000 m), originalmente descrita por Kaul (1970), compreende proporções variadas e interessratificadas de metarenitos muito finos a médios e metapelitos, cujos protólitos foram depositados em sistema dêltico com aumento, para o topo, da quantidade de areia e espessamento dos leitos. As relações de contato entre as formações Riacho do Bento e Mosquito, e entre Mosquito e Fazendinha são transicionais, sem evidência de descontinuidades.

Apesar do contato basol do Sintema São Marcos não ser facilmente visível, pois grande parte do mesmo está coberta por sedimentos recentes, o mesmo assinala o aporte significativo de sedimentos arenosos ricos em feldspato, isto é, de menor maturidade e atuação de processos costeiros (eólicos e marés) logo acima das fácies eólicas do Sintema Bom Retiro e, assim, retratando mudança na assinatura sedimentar, na forma de reebraçamento do aporte sedimentar e, possivelmente também, de área-fonte. No extremo sudeste do Espinhaco a unidade assenta ora sobre as rochas vulcânicas do Sintema São Simão, ora sobre as do Complexo Paramirim, o que sugere, como hipótese inicial, contato inferior por discordância e mudança de regime deposicional.

Os depósitos do Sintema São Marcos materializam o preenchimento de ampla sinclise intracontinental durante evento de
subsídencia flexural de origem incerta (sexta evento da bacia Espinhaço). A espessura máxima se localiza em um único depocentro situado na parte central do bloco de Boquira, com diminuição de espessura para norte e sul.

A evolução do sintema pode ser apreciada mediante três tratos deposicionais. O basal é transgressivo a gradacional depositado em sistemas costeiros e marinho raso platformat (Formação Ria-chó do Bento). O intermediário foi depositado em sistema deltaico, aparentemente do tipo marinho-domínio, e é interpretada como um trato de mar alto (Formação Mosquito). O de topo marca o retorno de trato transgressivo-agradacional, de sistemas costeiros e marinho raso platformat (formação Fazendinha). O predominio de fácies de granulação muito fina a média sugere que a sedimentação do sintema ocorreu sob lentas taxas de subsídencia, com variações euastáticas, mas sem formação significativa de fácies de granulação muito grossa que possam se relacionar a movimentos tectônicos rápidos. Hipoteticamente, as unidades do Sintema São Marcos podem ser correlacionadas com as formações Ipupiara e Guné na Chapada Diamantina, e depositadas entre 1,2 e 1,5 Ga (do Calimiano ao Ecostasio). Intrusivas básicas consideradas por alguns autores (por ex. Sá 1981), como mais antigas que 1,1Ga, correm estas rochas.

A espessura estimada do Sintema Sítio Novo varia de um local ao outro dentro de um mesmo compartimento, mas é contrastante se comparados os oriental e ocidental. No bloco de Boquira, varia de 4.000 a 12.000 m, com depocentro em forma de calha de direção NNW-SSE, a leste da falha de Santo Onofre. No bloco de Ibitirama, varia entre 1.500 e 2.000 m, sem evidência de uma tendência de espessamento que marque depocentro preferencial.

A Formação Veredas (máx. de 2.000 m) consiste de pacote arenoconglomerático, com marcantes variações laterais e verticais de fácies. As rochas desta unidade compreendem conglomerados e microconglomerados oligomórficos ortoquartzoíticos e diamictitos arenosos, localizados preferencialmente na base do pacote, arenitos a muito grossos e variáveis entre quartzo-arenitos, arenitos feldspáticas a líticos, com variada estratificação cruzada e interestratificados, em proporções variadas, e raras metapelitos. Como registrado por Fleischer (1971), Schobbenhaus (1972) e Costa & Silva (1980), a porção intermediária da seqüência contém um horizonte de média de 10m de metareto com dumortierita e/ou cianita.

As formações Viramundo (máx. de 9.500 m) e Garapa (máx. 1.500 m) são litologicamente semelhantes e consistem de arenitos muito fios a grossos, raramente muito grossos, puras e feldspáticas e com estratificação cruzada diversa. Camadas e lentes de metapelito são subordinados, mas, em particular na Formação Viramundo, ocorrem como alguns horizontes espessos (Unidade Umbuzeiro de Costa & Silva 1980). Localmente ocorrem leitos de microconglomerado. O Membro Sucurial tem cerca de 300 m de espessura e consiste de mármores dolomíticos e calcíticos com estromatolíticos, situados entre metapelitos basais e metarenitos da Formação Garapa.

O limite inferior do Sintema Sítio Novo é uma superfície de erosão profunda da porção superior do Sintema São Marcos e diagn: novociado, em boa parte, por conglomerados basais, bem como pela descontinuidade deposicional entre as unidades. Ademais, as intrusões básicas no pacote inferior não alcançam esta superfície. No bloco de Boquira, a discordância separa as rochas dos Sintemas São Marcos e Sítio Novo, o que acompanhado pela brusa mudanças na natureza das fácies sedimentares e ambientes deposicionais. Rochas sopetorbras, pertencentes ao topo do Sintema São Marcos, foram depositadas em ambiente marinho.
plataformal (Formação Fazendinha), ao passo que as sobrepostas são continentais (Formação Veredas), localmente com dianicitos contendo fragmentos de arenito sem deformação e metamorfismo, e arenitos líticos e argilosos (grauvacas), o que sugere erosão de rochas sotopostas, inclusive de máficas intrusivas. No bloco de Ibotirama, as rochas clásticas do Sintema Sítio Novo transgridem rochas cristalinas ao longo de uma não-conformidade.

Apesar da semelhança de pacote sedimentar entre os Sintemas Sítio Novo e São Marcos, o arcaibou estratigráfico do primeiro é distinto e evoluiu em sistema bacinal próprio. A natureza clástica do Sítio Novo sugere o preenchimento de possível rife assimétrico, extenso e originado durante o sítio evento geodinâmico da bacia Espínaço. A falha de Santo Onofre, de direção NNW-SSE, possivelmente define o limite entre os blocos da lapa, a oeste, e da capa, conformando geometria do tipo hemigrânulo. A espessura da unidade varia de acordo com a posição na bacia, alcançando até 12.000 m na capa e menos de 2.000 m na lapa. O preenchimento inicial do rife ocorreu com os protólitos das rochas da Formação Veredas, sobrepontu no bloco da capa, com depósitos de leques aluviais, fluviolíticas e cólico na base, e de zona costeira no topo com evidências de deposição já no estágio de golfe. A presença de dumortierita em detereminado intervalo sugere deposição de evaporitos. O preenchimento do restante e mais volumoso do hemigrânulo realizou-se com depósitos que variam de litóreo e marinhos ao rafe de rampa siliciclástica com alguma influência deltaica (Formação Viramundo). Durante a sedimentação houve competição entre processos dominados por ondas normais, de tempestade e correntes de maré. Na capa, o equivalente desta pilha são as rochas da Formação Guarapu, na qual ocorrem apenas fácies depos sitadas em sistemas litóreos e marinhos rafe platiformal. Localmente ocorrem mármores com estromatólitos, com os de Membro Saciural.

O Sintema Sítio Novo pode ser correlacionado com formação do Grupo Chapada Diamantina, supostamente no Esteniano, durante algum intervalo entre 1,0 e 1,2 Ga. Aquelas formações ocuparam o espaço gerado na borda flexural do rife. Dados radiométricos pelo método Pb-Pb dos mármores estromatóliticos deste sintema foram de 1.140±140 Ma (Babinski et al. 1993).

Sintema Santo Onofre

O sintema está exposto ao longo de toda a extensão oriental do bloco de Ibotirama e ocidental do bloco de Boquiara, seccionado em boa parte pela falha de Santo Onofre. A unidade também ocorre junto a falha do Muquém, limite entre os blocos de Ibotirama e Guanambi-Constantina, na forma de faixas descontínuas estreitas e extensão variada. Mesmo desmembrada, os vários segmentos são perfeitamente correlacionáveis, tanto pelas fácies características quanto pela posição estratigráfica definida.

O sintema contém três formações com características sedimentares distintas e denominadas de Canatiba, Boqueirão e João Dias. Estas unidades são essencialmente siliciclásticas, com predominio de pelitos na primeira, sedimentos pelítico-pasmáticos na Formação Boqueirão e ruditos na Formação João Dias. As relações de contato mostram que a Formação Canatiba situa-se na base do sintema, mas, para oeste, lateralmente se interdigitita e, em direção ao topo, passa gradualmente para a Formação Boqueirão. Estas relações ocorrem a leste e oeste da falha de Santo Onofre. Por outro lado, a Formação João Dias se situa no topo do sintema, mas, em algumas seções a leste, se interdigita lateralmente com a Formação Boqueirão. Isto mostra que a configuração regional e relações estratigráficas entre as unidades deste sintema são complexas e marcadas por amplas variações verticais e laterais de fácies. A espessura do sintema é superior a 4.000 m, mas incerta devido ao grau avançado de encrutamento tecológico de parte da sucessão e a movimentos ao longo da falha de Santo Onofre que resultaram em complicações estruturais no arcaibou estratigráfico. Isto, por seu turno, dificulta a identificação de depocentros. Aparentemente, a unidade se depositou em várias calhas profundas de orientação NNW-SSE. A Formação Canatiba (mín. 1.200 m) é dominada por metapelitos, em geral carbonosos, cujo topo contém intercalações de arenito fino a médio. Essas rochas foram descritas, pela primeira vez, por Schobbenhaus (1972). O autor a situou na Formação Santo Onofre, mas Costa & Silva (1980) a individualizam sob a denominação de fácies Canatiba da Unidade Santo Onofre. Trabalhos subsequentes não a reconhecem como unidade independente. Já Fernandes et al. (1982) utilizam esse termo para definir uma sucessão mais extensa no segmento estudado. No presente trabalho adota-se como área de ocorrência da unidade a cartografada por Costa & Silva (1980), com poucas variações dos seus limites. A sua área de ocorrência limita-se à parte central do Espínaço setentrional, onde assenta sobre a Formação Viramundo, do Sintema Sítio Novo, e, assim, representando a porção basal do Sintema Santo Onofre.

As rochas da Formação João Dias (mín. 500 m), descritas por Rego (1920) e Beurlen (1970), são restritas e foram cartografadas, no Projeto Santo Onofre (Costa & Silva 1980), ao longo da borda ocidental do bloco de Ibotirama. Estas consistem de brechas sedimentares e, em menor volume, conglomerados, às vezes difusamente interesstratificados com arenitos grossos a muito grossos, às vezes microconglomerados, e raros pelitos carbonatados.

Revista Brasileira de Geociências, Volume 32, 2002

O contato inferior do Síntema Santo Onofre, frente ao arcabouço tectônico do Espinhaço, se caracteriza de três formas. No compartimento tectônico de Boquira, embora concordante, o contato com as rochas do Síntema Sítio Novo é deposicional brusco e evidenciado pelo recobrimento de sedimentos marinhos plataformais do Síntema Sítio Novo pelas fácies pelágicas e hemipelágicas da Formação Canatiba do Síntema Santo Onofre e, assim, por mudança repentina de fácies, ambientes e sistema deposicional. No compartimento de Ibotirama, o contato é por discordância angular, bem visível em imagem de satélite, entre os turbíditos da Formação Boqueirão as rochas do Síntema Sítio Novo sotoposto. Em trabalhos de campo, a discordância angular é dada pela direção N-S dos estratos do Síntema Sítio Novo e NNW-SSE das camadas do Síntema Santo Onofre. Por fim, nesse compartimento, a discordância se materializa pela erosão de rochas do Complexo Paramirim e do Síntema Sítio Novo, expostas por soerguimento, com isto passando a atuar como área-fan do Síntema Santo Onofre.

Ao longo da porção ocidental da Serra do Espinhaço, acima das brechas sedimentares da Formação João Dias ocorrem duas unidades litologicamente distintas e conhecidas sob a denominação de Formação Brejinho, constituída de pelitos, e a Formação Sete Lagos, composta de calcarenitos com intercalações subordinadas de calciruditos e calcissiltitos. Ambas pertencem ao grupo (Síntema) Bambuí e assentam sobre rochas do Síntema Santo Onofre por meio de desconformidade que separa ambientes deposicionais contrastantes. Contudo, a relação entre elas não é clara, uma vez que aflora em regiões distintas, sem relação direta de contato. O contato entre o Síntema João Dias e a Formação Sete Lagos é, em alguns locais, um horizonte de chert finamente acamadado, ainda pouco compreendido no cenário bacinal. As feições sedimentares dessas unidades são típicas de ambiente marinho raso, com retraiblemento por ondas e tempestades.

O Síntema Santo Onofre é o registro do último evento de preenchimento da bacia principal nos domínios da área investigada. Sua assinatura sedimentar é compatível com o desenvolvimento de uma bacia do tipo strike-slip, ou transtretiva, cuja atividade tectônica deflagrou a profunda erosão no bloco de Ibotirama e formação da discordância angular com rochas do Síntema Sítio Novo, subjacentes. Ao longo da falha do Muquém, borda principal da bacia, formaram-se hemigrânulos preenchidos principalmente por fácies de granulação grossa a muito grossa, depositadas em leques deltáticos da Formação João Dias. Ao longo do eixo principal da bacia, interpretada como calha sinfomal de bloco baixo situado a leste dos hemigrânulos, o preenchimento deu-se às custas de amplas variações verticais e laterais de fácies de granulação muito fina a muito grossa geradas por fluxos gravitacionais de sedimentos de alta e baixa densidade, ou hipercircunferenciados. Boa parte da sucessão definida pela Formação Boqueirão é interpreta-

da como leques de talude submarino, canalizados e espiraiados, e a outra parte, como de base-de-talude. A fácies de granulação muito fina a fina da Formação Canatiba, intervalo inferior do Síntema Santo Onofre, consiste de turbiditos de baixa a alta densidade depositados ao sopé do talude e fundo de bacia.

CONSIDERAÇÕES SOBRE A GEOLOGIA DA BACIA ESPINHAÇO

As investigações regionais realizadas no Espinhaço setentrional, permitiram elucidar diversas questões geológicas pendentes acerca desse segmento e trazer novas e importantes descobertas ao entendimento da evolução tectonoestratigráfica daquela bacia. Com base na integração de dados, foi possível tecer novas conjecturas sobre a geologia dessa bacia, a saber:

(i) A bacia Espinhaço é policíclica, pois se caracteriza por diversos ciclos estratigráficos de 1ª ordem e/ou de formação de bacia, é multitemporal, porque os ciclos se desenvolveram em determinados períodos, separados por intervalos de tempo registrados por discordâncias, e é polistratificada (sensu Klein 1987), uma vez que cada ciclo é a resposta a determinado processo geodinâmico e/ou de subsíndice tectônica definido no tempo e no espaço.

(ii) A partir do quadro tectonoestratigráfico apresentado, definido por 6 ciclos resultantes de subsíndice e 2 por flexura passiva, conclui-se que o registro sedimentar da bacia é episódico no tempo geológico e que as discordâncias devem registrar grande parte do tempo envolvido no desenvolvimento da bacia Espinhaço. Assim, é impraticável a aplicação da Estratigrafia de Seqüências na análise do seu preenchimento, já que o método avalia ciclos de 3ª ordem em uma bacia de 1ª ordem (por ex. Mill 2000).

(iii) As espessuras máximas das unidades identificadas no Espinhaço setentrional, embora mereçam ser melhor avaliadas, não estão dispostas em um único depocentro bacinal, pois os processos formadores de bacias variaram de um evento ao outro, com migração de depocentros. Assim, os processos tectônicos associados a algumas bacias rotacionaram emplenhamentos estratigráficos prévios e inibiram a deposição em depocentros anteriores.

(iv) Grandes volumes do preenchimento da bacia foram provavelmente suprimidos do registro sedimentar durante os eventos de formação de bacias, em virtude do soerguimento excessivo de alguns blocos crustais e consequente erosão. Da mesma forma, a configuração da Serra do Espinhaço é fruto da erosão parcial durante o Fanerozoico imposto sobre o seu arcabouço tectônico final (moldado pelo evento Brasiliano). Assim, a extensão cartográfica atual das unidades não corresponde mais aos limites originais de cada bacia.

(v) O termo ‘Ciclo Espinhaço’, no sentido do Ciclo de Wilson,
deve ser abandonado, pois não envolve abertura de bacia por simples rifamento, seguido de preenchimento e orogenese.

(vii) O termo ‘Aulacogênio do Espinhaço’ (Costa & Inda 1982) também não condiz com o modelo exposto, pois o mecanismo geodinâmico de geração de aulacogênios, como atualmente entendido, dificilmente se aplica à bacia Espinhaço, mas não exclui a possibilidade de se aplicar a um ou outro ciclo.

(viii) Sugere-se que a Estratigrafia de Sintemas seja utilizada como novo modelo de investigação da bacia Espinhaço, em substituição à clássica litoestratigrafia. Assim, o termo ‘Supergrupo Espinhaço’ deve ser abandonado ou criteriosamente revisado, com restrição de emprego.

(ix) Assim, o termo ‘bacia Espinhaço’ define mais um local de acumulação de bacias sucessivas e superpostas no tempo geológico de evolução da placa SanFranciscana, a exemplo da bacia do Paraná na placa Sul-Americana (por ex. Milani 1997), ao invés de uma bacia singular de evolução contínua, sem descontinuidades significativas e resultante de apenas um único evento geodinâmico. Apesar de óbvio no estudo de bacias fanerózoicas, esta conside- ração é pouco entendida, ou mesmo desconhecida, no estudo de bacias mais antigas, que resulta na elaboração de modelos inconsistentes com a Tectônica Global (por ex. Allen & Allen 1990), sobretudo com relação ao timing dos processos geológicos e que resultam, em geral, em histórias geológicas demasiadamente longas, inexplicáveis à luz dos processos envolvidos na formação de bacias sedimentares.

Agradecimentos

À Fundação de Amparo à Pesquisa de Minas Gerais (processo nº CEX-864/96), instituição que financiou boa parte das despesas necessárias para a realização deste trabalho, ao Instituto de Geociências da Universidade de Brasília pelo suporte institucional, a Eliane Quintão pela revisão ortográfica do original e aos revisores da RBG pelas sugestões e críticas ao manuscrito.

Referências

Manuscrito A-1267
Recebido em 02 de novembro de 2001
Revisão dos autores em 15 de dezembro de 2002
Revisão aceita em 20 de dezembro de 2002

460

Revista Brasileira de Geociências, Volume 32, 2002